US009250880B2

a2 United States Patent 10) Patent No.: US 9,250,880 B2
Nakaike (45) Date of Patent: Feb. 2, 2016

(54) METHOD FOR OBTAINING EXECUTION 2004/0261067 Al* 12/2004 Komatsu et al. 717/158
FREQUENCY INFORMATION ON 2006/0048114 Al* 3/2006 Schmidt ... 717/148
2006/0242636 Al* 10/2006 Chilimbietal. 717/158

EXECUTION PATHS IN CONTROL FLOW
GRAPH, AND COMPUTER AND COMPUTER
PROGRAM FOR OBTAINING THE
INFORMATION
(71) Applicant: International Business Machines
Corporation, Armonk, NY (US)
(72)

Inventor: Takuya Nakaike, Kanagawa-ken (JP)

(73) International Business Machines

Corporation, Armonk, NY (US)

Assignee:

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by O days.

@
(22)

Appl. No.: 14/551,485

Filed: Nov. 24, 2014

(65) Prior Publication Data

US 2015/0149988 A1l May 28, 2015

(30) Foreign Application Priority Data

NOV. 25,2013 (JP) woooooeceeeeee e 2013-243092
(51) Int.CL
GOGF 9/45
USS. CL

CPC

(2006.01)
(52)
GOGF 8/4441 (2013.01); GOGF 8/433

(2013.01)

(58) Field of Classification Search
CPC GOGF 8/4441

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,327,699 B1* 12/2001 Larusetal. 717/128
6,848,100 B1* 1/2005 Wuetal.cceooenne 717/157

(Example 3)

Assign path value
{Assign 0 to

edge v -r>w1)[

code

221
(Prior Art 3}

Assign path value eliminated

{Assign 1 to
edge v—>w1,
and assign 2 to

edge v—> w2) [

Insert
2 instrumentation

0 is assigned to edoe v—w1
Therefore a vl fo be added
or sublracted on edge v—>wi is
zer0, need for instrumentation
Sodg on ccge v
sliminated, and nee:
of basic block is af

—>w?is

Insert
instrumentation

code :

FOREIGN PATENT DOCUMENTS

JP 5197563 A 8/1993

JP 11242597 A 9/1999

JP 2000347879 A 12/2000

JP 2001236227 A 8/2001

JP 200532018 A 2/2005

JP 2006120124 A 5/2006
OTHER PUBLICATIONS

Ball et al., “Efficient Path Profiling”, International Symposium on
Microarchitecture, 1996 IEEE, pp. 46-57.

Bond et al., “Continuous Path and Edge Profiling”, Proceedings of
the 38th Annual IEEE/ACM International Symposium on
Microarchitecture, 2005 IEEE.

Japanese Patent Application No. 2013-243092, filed Nov. 25, 2013.

* cited by examiner

Primary Examiner — Philip Wang
(74) Attorney, Agent, or Firm — Maeve McCarthy

57 ABSTRACT

The present invention is a technique for obtaining execution
frequency information on execution paths in a CFG, includ-
ing preparing a CFG from a source code read into a memory,
preparation of the CGF including modifying the CFG by
assigning path value zero to an edge v—w between a prece-
dent basic block v and a successor basic block w following the
predecessor basic block v in a case where the successor basic
block w has a predecessor basic block x other than the pre-
decessor basic block v, and where the successor basic block w
exists on a fall-through path from the predecessor basic block
x. The technique also includes obtaining execution frequency
information by using the modified CFG.

11 Claims, 15 Drawing Sheets

224,

223
for insertion

o
also

US 9,250,880 B2

Sheet 1 of 15

Feb. 2, 2016

U.S. Patent

vl

} 'Ol
VON 501 5T
7 T aAIQ QaH
asnop pleoghay dnd <
19]]04U09 701
Obb———] /esnop AHHV A”JLV 19]j043u0D
/pie0qARY V1v-S
vib el ¢0b
0eaY| AHHH..V 19][04}U0) AHHV A”v K1owspy
UOHEOIUNWILIOY UOIBIUNLILIOY ule
— oL —
90} Prm— T AHV A.HHHV <0}
feidsiq o010 NdD

US 9,250,880 B2

Sheet 2 of 15

Feb. 2, 2016

U.S. Patent

V¢ 'Old
M)00|q 2iSBq 0}

dwn{ syew o} uononisul dwnpyy ‘m dwf €0/ z0/ 10/
%00|q 3ISBq paylasu| jo peay
ayl 1e anjea yied se | ppyy/ i) =+ 4

> el Kl 3

k4 8pod (M« abpo
uonejuswinisu 0} | ubissy)
IE] 0
A | anjea yled ubissy
(1 Wy Joud)
“POJRUILLIS OS|E SI 490[q ¢0¢ 102
JISBQ JO UOINASUI 4O} padU pue
‘pajeultle St m<—A aBpa uo 8poy
UORBJUBWINISU JOy pasU ‘019z M
s1 m<— 8fps uo pajERIGNS 40
pappe 8q O] anjeA e alojatayl *
8p03 ‘Me<—n 86ps 0] paubisse si 0 %
UOHBIUBWNISUI : §>T>mmmnm
" 1esuy| i 0} 0 ubissy) »
anjea yied ubissy A
“te.... ..~ painbas vononnsu dwnl oN

T X yoo|q o1seq Jo pesy

ay} Je onjea yied se | ppyy/ | =+ (1 aidwex3)

US 9,250,880 B2

Sheet 3 of 15

Feb. 2, 2016

U.S. Patent

M %90|q viseq o} dwn{
ajew o} uononysul dwinpys ta dwf
%20|q DiSBq pSiias j0 peay
ayi e anjea yjed se | ppyyy i =+ 4

W] g¢ 9ld

X %20|q 9iseq 0} dwnf
ayew o} uononnsw dwnpyf X dwl

M ¥00[q DISeq palasul Jo peay
i 3y} 1e anfea yied se Z ppy// 'z =+ J
x
M M
01 AHHHH_ t
8po2 X >>A1>momvm ¥
uogjejuswnysw 0} | ubissy)
Hasul olZ anjeA yied ubissy
INAL A . AL TA
(Z Wy oug)

+ L
“a.
i,

i 14 ¥4 "POIBUILLIS OS[E S| %¥00[]

21SBQ JO UOILIBSUL 10} pasu pue
‘peleUILIle S| M<—A 8Bps uo 8poo
UOMRIUSWNISUL JO} DPBBU ‘0482
S Mm<—A 26pe uo peoenagns io Z12 Lz
pappe 8q 0} anjeA & 240j8l0U
'm<—A abps 0) paubisse sl

peJinbal uopsnisul Qsamz
%00[q 318BY pauasul Jo pesy
8} 18 enjeA yjed se | ppyy/ L =4 4

> | g
9pod “ (m< A abpa X
uoneUAWNASUI 0} ¢ ubissy)
* *..:.QN Hosu] ld/m anjea yied ubissy I7/
A A

o

Sy s

ARAK (z s1dwex3)

US 9,250,880 B2

Sheet 4 of 15

Feb. 2, 2016

U.S. Patent

LM %20|q o1seq 0} dwn(ON
ayew o1 uononasur dwnpfy fpm dul .
%00[q iSBG P3YASUY o peay ez) 43
oyl e anjea yied se 7 ppyy oL =+
ZM 3oojg 2iseq o) dwnf oM
ayew o} uopanisul dwnpyy izm dwf
00| 0I1SB(PaLSsyl J0 peay
84} 1@ an[eA yied Se Z ppyy/ || =+ J
M
§el.... apoo (zm <—n abps X
UONBIUBWINASU 0z ubisse pue
Jasu| Lm<—A abpe
0} | ubissy) A
“pojeUIUIle anjea yied ubissy
LnRetTANTaee, 0 0S[R 81400[q O1SEq JO
UOIJSU| 4O} PBaL puR ‘pajeullla (¢ 1y Jolid)
XA St (m<—A afips U0 apod 222 V22

ZM 000 21seq 0y diwnl

aew o uoponaisul dwnpyy ‘zm dwf
¥30|q 2Iseq pajesul jo pesy

ay) je anjea yied Se 7 ppyy/ f =+ 4

A uouguswnisul Joj pasy ‘o192
ﬁ Si L M<—A 3Bpo U0 pajoelgns 4o

pappe aq o} anjeA e alolslay)
‘L m<—n abps oy paufisse si g

2po2 {m<—A abips
uofjeluswinsul g 0} 0 ubissy)
paJinbas uoionysul dwnl oy Liasy] anjea r:ma cm.ww<

¥00|q 2ISBY pajiesul jo peay
syl ie snea tjed se | ppy)) =+ et

(¢ edwex3)

US 9,250,880 B2

Sheet 5 of 15

Feb. 2, 2016

U.S. Patent

LM N204G diseq o} dwinf

ayew 0} uoyonigswy dwnpjy fpm duwf
%00iQ JISBG PBLBSUL J0 peaY
ay) je anpen yied se |, ppyy i) =+ 4 ees
M 20ig o1seq 03 dwinf . 3

£ee exew 0} uononsut dwnpys ‘zm dwf
,,,,,,,,,,, ¥00]q 2152q pauesyl jo peay
41 Je anjen yied se g PPV I7 =+ 4 F

ZM 330|q 21seq 0} dwn{ r
ayew o} uononiisut dwnpyy tzm dwl E
330|G 21seq payesul Jo pesy
8y} 1e enjea yed se 7 ppyy/ i} =+ J

330|q 218G paasul

X %20|q s1seq 0} dwinf
ayew o} uonondisul dwnpy/ x duf

8y} 18 anjen Yied se ¢ ppyy i =+ J

X %20jq J1seq o} dwn|

w ayewl 0} uononasy| dwnpys ix dwl
¥90{q 0188Q Pepesu] o pesy

3y} 1e enjea yied 8B £ ppy// i =+

dwinl oN

palinbel uoyanAsu;
%30]q 01SBq Papasy) Jo peay
8y 1e anjea yed se | ppyy/ || =+ 4

v

‘pejeulwe |
0S[e St ¥20|q 0ISeq 10
UOHJOSUL 40} POBU puE ‘pajRUILE s,
8| | m<—n abpa uo spoa
UOIBIUBWINIISY! JO} poau ‘0iaZ
SI [Me—A 80ps U0 pajoesgns Jo
pappe oq 0] anjeA B 2J0ja4ay]

‘1m<—n abpa o) peubisse st 0 yopejuswingsul

ac 'old

L€l
o peay
2]
.A. &3
\ m
L apod ¢ o NN@%M%W“W/AA, 2
uoljejusiinisul S " ﬁ,ﬂ_’owwﬁ
Hasuy| anea yied coﬁm<
.. 98¢ (¥ Wy Joud)
eee LeZ

(3
ey
LRI

Alllll_

(Lm<—n obpo
0} o ubissy)

op09

Jesu| ¢

(y 9)dwex3)

U.S. Patent Feb. 2, 2016 Sheet 6 of 15 US 9,250,880 B2

<y
Source code

Read source code <] to be
302 compiled
¢ 391
N
Prepare control flow graph
303

304

To
be modified

Modify control flow graph
305

»i'

Obtain execution frequency
information
306

End 307

FIG. 3A

U.S. Patent Feb. 2, 2016 Sheet 7 of 15 US 9,250,880 B2

BBList = List of all basic blocks in control flow
graph sorted in reverse topological order

N = Number of basic blocks
I =0

NumPath[V] = 1 V = BBList[]]
317 314

315
/

Is

V end of control

flow graph
?

No

NumPath[V] = 0
316

v

Assign path value to
< edge from V
318

FIG. 3B

U.S. Patent Feb. 2, 2016 Sheet 8 of 15 US 9,250,880 B2

successor basic block
W following V have predecessor
basic block X other than V exist?
Does W exist on fall-through
path from X?

E'=0

|OO

E'=E'=Edge fromVio W |
Val[E'] = 0 — 323

NumPath[V] += NumPath[W]

v

EList = List of edges from V
M = Number of edges from V |_325
J=0

Val[EList[J]] = NumPath[V]
< NumPath[V] += NumPath[successor basic block of EList[J]]

FIG. 3C

US 9,250,880 B2

Sheet 9 of 15

Feb. 2, 2016

U.S. Patent

¥ "Old

"uonuaAul jussald sy} jo uoneuswa|dwi
ay} ypm aouepioaoe ul abpa 18y 8yl 0} ¢ anjea yyed
Bulubisse Jog wyjsoble ue 0] puodsailod Z| pue ‘gQ ‘20 ‘G0 saurl (Z 910N)

‘3 abpa 0} (3)|eA anjeA Bulubisse
o} wyyiobje ue si pue ‘uonusaul Jussald sy Jo uoijeiusws|duwl
9U} Uj pappe apoo sI || pue ‘60 ‘80 ‘L0 ‘90 S8UI| ul umoys apo) (] JON)

4 ™
(M) uredwnN + (A) uledwny = (A) yredwnp ¢l
{(A) yledwny = (3) |ep 4!
onunuod (3 == 3J) H m
M A =13 8bps .o} 0l
{(,3) j040ss800n8) YiedwnN + (A) yiedwnN = (A) yedwny 60
{(A) yledwnn = (,3) [eA 80
(MAN =i 3)4# 10
‘(A) eBp3ggmenpull = 3 abps 90
‘0 = (A) yledwnp G0
N 0
‘L= (A) yledwny €0
ydelb moj} |0J1U0D 8Y} JO 1IXD BYL SI A JI 20
ydesb moyj |043u02 Jo Japio |eoibojodo] 8SIBABS Ul A H00|q 0iSBQ S0} L)
L 107

US 9,250,880 B2

Sheet 10 of 15

Feb. 2, 2016

U.S. Patent

uonueAu| jussald [

MY Joud [

)

§

o S
/%
¥
OO
»
6
1)
96 7
L6 o
196§
66 =
00L 8
(@]
0L =
A=
0l
701

U.S. Patent Feb. 2, 2016 Sheet 11 of 15 US 9,250,880 B2

601
Memory
611 Source code to
be compiled

Control flow graph
preparation means
612

Control flow graph
modification means
621

t

Execution frequency
information obtaining
‘means

\613

FIG. 6

US 9,250,880 B2

Sheet 12 of 15

Feb. 2, 2016

U.S. Patent

d

M)20|g 2iseq 0}
wnl ayew 0} uogonssur dwnpjy ‘m dul
¥90|q 2iSeq paliasul jO peay

€0/

oy} Je njen yjed se | ppy// 1| =+ I

> X 2

V. '9Old

H apod

uoneUBWINISUI
LSy

}
AEAI> abpo

0} | ubissy)
anjea yied ubissy

(1 Wy 1oud)

10

US 9,250,880 B2

Sheet 13 of 15

Feb. 2, 2016

U.S. Patent

m %00jg 2iseq o} dwn{
axew 0] uononasul dwnpy) ‘s dwl
¥30|q 3ISBQ palasyl Jo pesy
ay] Je anjea yied Se | ppyy) il =+ d

el

g

d. '9ld

X ¥00|[q oiseq 0} dwinf
ayew 0y uononusul dwnpyy x dwf
¥00|q OiSeq pajiasul Jo peay
ay} je anjea yied se Z ppy// ‘2 =+ 4

9poo

uoleIUBWNSUl
Jasy|

AW}
M
04
x
o<
A A

“M (M <A 3Bps

0} | ubissy)

anjeA yjed ubiss

27

m/

(z uv Joud)

US 9,250,880 B2

Sheet 14 of 15

Feb. 2, 2016

U.S. Patent

LM %00q aiseq ¢} dwin|
ayew o) uononasul dwnpy M dwl

¥00|q DISBY PAMSSU] JO pedY
9U) 1 anjeA yied e | ppy/ 'L =+ 4

€¢l

ZM Xo0jq 2iseq 0} duwinf :
ayew o} uononasuy dwnpy/ ‘zm dwl

&N
>

%00|q DISRG PALIBSU JO PRSY
ay} je anjen yjed se Z ppyy 1) =+

BNy

J. "9l

e ><-—>"§-->« Sy}

“ 8po9

uoIIRJUSWINIS Ul
Jasy

“ (Zm <A 8bpa

A
0} z ubisse pue
‘LM <A 8Bpo
0} | ubissy)

anjea yied ubissy

(€ Wy Jolid)

VCL

US 9,250,880 B2

Sheet 15 of 15

Feb. 2, 2016

U.S. Patent

LM %00)g a1seq o} duwin{
ayew 0} uogonisul dwnpyf fpm duf
300(q 2iseq payesu) Jo pesy €el
ay) 1e enjea yjed se | ppyi/ | =+ 4

ZM ¥00ig 21584 0) dwin] :

oxew 0} uoponasu dwnpy/ ‘zm duf
%00|q JISBQ PaLasU} JO peay

3y} 18 enfea uyied se z ppyy fL =+ !

u 8poo

X %201q siseq 0} dwn{
axew o) uonpongsul dwnpyy ix dwf
%90|q 3iSeq poliasul Jo peay
ay} e onjen yied Se ¢ ppyy/ ‘¢ =+ 4

al "old

€L

uoHEUBWINIISUl
Jiosu|

”_: Mm<—nA 36pa

I
0} z ubisse pue
‘IM<—A 8bpe
0} | ubissy)

anjea yied ubissy

(¥ Wy Joud)

US 9,250,880 B2

1
METHOD FOR OBTAINING EXECUTION
FREQUENCY INFORMATION ON
EXECUTION PATHS IN CONTROL FLOW
GRAPH, AND COMPUTER AND COMPUTER
PROGRAM FOR OBTAINING THE
INFORMATION

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of priority under 35
U.S.C. §119 from Application No. 2013-243092, filed on
Nov. 25, 2013 in Japan.

BACKGROUND

The present invention relates a technique for obtaining
execution frequency information on execution paths in a con-
trol flow graph.

A control flow graph is a graph in which all paths each
having a possibility of being passed when a program is
executed are expressed and the flow of control of the program
is expressed. In this graph, a node represents a basic block
(that is, no branch and no confluence at any intermediate
points), and a directed edge making a node-to-node connec-
tion denotes a transition from one basic block to another basic
block.

A basic block is a sequence of processing (statements or
instructions) in a program, having no branch and no conflu-
ence at any intermediate points. Statements in a basic block
are executed straight from the first to the last. In general, an
entry block and an exit block exist as an entrance and an exit,
respectively, of the entire graph described above.

In a control flow graph, a state where a directed edge is
drawn from a basic block X toward a basic block Y is
expressed as X—Y. X in this expression is referred to as a
predecessor basic block or a predecessor node, and Y as a
successor basic block or a successor node. Also, a node fol-
lowing multiple predecessor nodes is referred to as a merge
node, and a node followed by multiple successor nodes is
referred to as a branch node.

Control flow graphs are generally used in compiler optimi-
zation and static code analysis tools.

Profile information on a control flow graph, e.g., execution
frequency information on directed edges and execution paths
enables improving the effect of complier optimization. Pro-
filing of execution frequency information on directed edges
and execution paths in a control flow graph requires insertion
of an instrumentation code for measurement of the execution
frequency on each directed edge. As this instrumentation
code, a path value is given to each edge. Giving such a path
value to each edge eliminates the need for counting the edge
every time; the sum of path values is collected as execution
frequency information by summing up path values each
assigned to the edge when the edge is passed by execution of
the program. However, insertion of the above-described
instrumentation code on each of the above-described directed
edges increases the overhead, resulting in the degradation of
runtime performance.

Non-patent Literatures 1 and 2 shown below describe tech-
niques for profiling the frequencies of executions of execu-
tion paths.

Non-patent Literature 1 describes efficient path profiling.

Non-patent Literature 2 describes continuous path and
edge profiling.

10

15

20

25

30

35

40

45

50

55

60

65

2

[Non-patent Literature 1] Thomas Ball et. Al., “Efficient
Path Profiling”, International Symposium on Microarchitec-
ture (MICRO’96), IEEE

[Non-patent Literature 2] Michael D. Bond et Al., “Con-
tinuous Path and Edge Profiling”, International Symposium
on Microarchitecture (MICRO’05), IEEE

FIGS. 7A to 7D are schematic diagrams showing a state
where a path value 1 is assigned to an edge between a pre-
ceding basic block (predecessor basic block) v and a subse-
quent basic block (successor basic block) w or w1l and an
instrumentation code is inserted in control flow graphs (701,
711,721, and 731) before modification respectively shown in
FIGS. 7A to 7D. Descriptions will be made of how the control
flow graphs (701, 711, 721, and 731) respectively shown in
FIGS. 7A to 7D are modified by insertion of an instrumenta-
tion code (i.e., an instruction to add a path value). The path
value is an integer value uniquely representing an execution
path passed through the control flow graph from a starting
point to an end point.

Referring to FIG. 7A (Prior Art 1), the control flow graph
(701) before modification has a predecessor basic block v and
two successor basic blocks following the predecessor basic
block v: a successor basic block x (which is a predecessor
basic block precedent to another successor basic block w, and
which is also referred to as predecessor basic block x) and a
successor basic block w. The predecessor basic block v is
connected to the successor basic block x by an edge v—x and
to the successor basic block w by an edge v—=w. The succes-
sor basic block x is connected to the successor basic block w
by an edge x—w.

A computer assigns a path value 0 to the edge v—x
between the predecessor basic block v and the successor basic
block x in the control flow graph (701) before modification,
and assigns a path value 1 to the edge v—w between the
predecessor basic block v and the successor basic block w.
The computer also assigns a path value 0 to the other edge.
Accordingly, a control flow graph (702) has the edge v—x
assigned the path value 0 and has the edge v—=w assigned the
path value 1.

Next, the computer performs an operation to insert the
instrumentation code in the control flow graph (702).

Since the path value 0 is assigned to the edge v—x, the
computer inserts no instrumentation code thereon. The com-
puter also inserts no instrumentation code with respect to the
other edge assigned the path value 0.

Since the path value 1 is assigned to the edge v—w, the
computer inserts on the edge v—w abasic block (704) includ-
ing an instruction to add 1 as a path value (r+=1). The inserted
basic block (704) includes a jump instruction (jmp w) to make
a jump to the successor basic block w as well as the instruc-
tion to add 1 as a path value (r+=1).

In a modified control flow graph (703) shown in FIG. 7A,
the number of jump instructions is increased by 1 (jmp w)
(704) as a result of insertion of the instrumentation code. A
problem thus arises that the overhead is increased.

Referring to FIG. 7B (Prior Art 2), the control flow graph
(711) before modification has a predecessor basic block v and
two successor basic blocks following the predecessor basic
block v: a successor basic block x (which is a predecessor
basic block precedent to another successor basic block w, and
which is also referred to as predecessor basic block x), a
successor basic block w, and a predecessor basic block y other
than the above-mentioned predecessor basic block v. The
predecessor basic block v is connected to the successor basic
block x by an edge v—x and to the successor basic block w by
an edge v—w. The predecessor basic block y is connected to

US 9,250,880 B2

3

the successor basic block x by an edge y—x. The successor
basic block x is connected to the successor basic block w by
an edge x—w.

A computer assigns a path value 0 to the edge v—x
between the predecessor basic block v and the successor basic
block x in the control flow graph (711) before modification,
assigns a path value 1 to the edge v—w between the prede-
cessor basic block v and the successor basic block w, and
assigns a path value 2 to the edge y—x between the prede-
cessor basic block y and the successor basic block x. The
computer also assigns a path value 0 to the other edge.
Accordingly, a control flow graph (712) has the edge v—x
assigned the path value 0, has the edge v—w assigned the path
value 1 and has the edge y—x assigned the path value 2.

Next, the computer performs an operation to insert the
instrumentation code in the control flow graph (712).

Since the path value 0 is assigned to the edge v—%, the
computer inserts no instrumentation code thereon. The com-
puter also inserts no instrumentation code with respect to the
other edge assigned the path value 0.

Since the path value 1 is assigned to the edge v—w, the
computer inserts on the edge v—w a basic block (714) includ-
ing an instruction to add 1 as a path value (r+=1). The inserted
basic block (714) includes a jump instruction (jmp w) to make
a jump to the successor basic block w as well as the instruc-
tion to add 1 as a path value (r+=1).

Similarly, since the path value 2 is assigned to the edge
y—X, the computer inserts on the edge y—x a basic block
(715) including an instruction to add 2 as a path value (r+=2).
The inserted basic block (715) includes a jump instruction
(jmp x) to make a jump to the successor basic block x as well
as the instruction to add 2 as a path value (r+=2).

In a modified control flow graph (713) shown in FIG. 7B,
the number of jump instructions is increased by 2 (jmp w and
jmp x) (714 and 715, respectively) as a result of insertion of
the instrumentation code. A problem thus arises that the over-
head is increased.

Referring to FIG. 7C (Prior Art 3), the control flow graph
(721) before modification has a predecessor basic block v and
three successor basic blocks following the predecessor basic
block v: a successor basic block x (which is a predecessor
basic block precedent to other successor basic blocks w1 and
w2, and which is also referred to as predecessor basic block
X); successor basic blocks w1 and w2; and a predecessor basic
block y other than the predecessor basic block v (which is a
predecessor basic block precedent to the successor basic
block w2). The predecessor basic block v is connected to the
successor basic block x by an edge v—x, to the successor
basic block w1 by an edge v—w1, and to the successor basic
block w2 by an edge v—=w2. The successor basic block x is
connected to the successor basic block w1 by an edge x—w1.
The successor basic block w1 is connected to the predecessor
basic block y by an edge w1l—y. The predecessor basic block
y is connected to the successor basic block w2 by an edge
y—=w2.

A computer assigns a path value 0 to the edge v—x
between the predecessor basic block v and the successor basic
block x in the control flow graph (721) before modification,
assigns a path value 1 to the edge v—=w1 between the prede-
cessor basic block v and the successor basic block w1, and
assigns a path value 2 to the edge v—=w2 between the prede-
cessor basic block v and the successor basic block w2. The
computer also assigns a path value O to the other edges.
Accordingly, a control flow graph (722) has the edge v—x
assigned the path value 0, has the edge v—=w1 assigned the
path value 1, and has the edge v—>w?2 assigned the path value
2.

10

15

20

25

30

35

40

45

50

55

60

65

4

Next, the computer performs an operation to insert the
instrumentation code in the control flow graph (722).

Since the path value 0 is assigned to the edge v—x, the
computer inserts no instrumentation code thereon. The com-
puter also inserts no instrumentation code with respect to the
other edges assigned the path value 0.

Since the path value 1 is assigned to the edge v—w1, the
computer inserts on the edge v—=w1 a basic block (724)
including an instruction to add 1 as a path value (r+=1). The
inserted basic block (724) includes a jump instruction (jmp
w1)to make ajump to the successor basic block w1 as well as
the instruction to add 1 as a path value (r+=1).

Similarly, since the path value 2 is assigned to the edge
v—w2, the computer inserts on the edge v—=w2 a basic block
(725) including an instruction to add 2 as a path value (r+=2).
The inserted basic block (725) includes a jump instruction
(jmp w2) to make a jump to the successor basic block w2 as
well as the instruction to add 2 as a path value (r+=2).

In a modified control flow graph (723) shown in FIG. 7C,
the number of jump instructions is increased by 2 (jmp w1 and
jmp w2) (724 and 725, respectively) as a result of insertion of
the instrumentation code. A problem thus arises that the over-
head is increased.

Referring to FIG. 7D (Prior Art 4), the control flow graph
(731) before modification has a predecessor basic block v and
three successor basic blocks following the predecessor basic
block v: a successor basic block x (which is a predecessor
basic block precedent to another successor basic block w, and
which is also referred to as predecessor basic block x), suc-
cessor basic blocks w1 and w2, a predecessor basic block z
(which is a predecessor basic block precedent to the successor
basic block w2) and a predecessor basic block y (which is a
predecessor basic block precedent to the successor basic
block x). The predecessor basic block v is connected to the
successor basic block x by an edge v—x, to the successor
basic block w1 by an edge v—w1, and to the successor basic
block w2 by an edge v—=w2. The predecessor basic blocky is
connected to the successor basic block x by anedge y—=x. The
successor basic block x is connected to the successor basic
block w1 by an edge x—w1. The successor basic block w1 is
connected to the predecessor basic block z by an edge wl—z.
The predecessor basic block z is connected to the successor
basic block w2 by an edge z—w?2.

A computer assigns a path value 0 to the edge v—x
between the predecessor basic block v and the successor basic
block x in the control flow graph (731) before modification,
assigns a path value 1 to the edge v—=w1 between the prede-
cessor basic block v and the successor basic block w1, and
assigns a path value 2 to the edge v—w2 between the prede-
cessor basic block v and the successor basic block w2. The
computer also assigns a path value O to the other edges.
Accordingly, a control flow graph (732) has the edge v—x
assigned the path value 0, has the edge v—w1 assigned the
path value 1, and has the edge v—=w2 assigned the path value
2.

Next, the computer performs an operation to insert the
instrumentation code in the control flow graph (732).

Since the path value 0 is assigned to the edge v—x, the
computer inserts no instrumentation code thereon. The com-
puter also inserts no instrumentation code with respect to the
other edges assigned the path value 0.

Since the path value 1 is assigned to the edge v—w1, the
computer inserts on the edge v—=w1 a basic block (734)
including an instruction to add 1 as a path value (r+=1). The
inserted basic block (734) includes a jump instruction (jmp
w1)to make ajump to the successor basic block w1 as well as
the instruction to add 1 as a path value (r+=1).

US 9,250,880 B2

5

Similarly, since the path value 2 is assigned to the edge
v—w2, the computer inserts on the edge v—=w2 a basic block
(735) including an instruction to add 2 as a path value (r+=2).
The inserted basic block (735) includes a jump instruction
(jmp w2) to make a jump to the successor basic block w2 as
well as the instruction to add 2 as a path value (r+=2).

Similarly, since the path value 3 is assigned to the edge
y—X, the computer inserts on the edge y—x a basic block
(736) including an instruction to add 3 as a path value (r+=3).
The inserted basic block (736) includes a jump instruction
(jmp x) to make a jump to the successor basic block x as well
as the instruction to add 3 as a path value (r+=3).

In a modified control flow graph (733) shown in FIG. 7D,
the number of jump instructions is increased by 3 (jmp w1,
jmp w2, and jmp x) (734, 735, and 736, respectively) as a
result of insertion of the instrumentation code. A problem
thus arises that the overhead is increased.

As described above, the method shown as prior art entails
the problem that as a result of insertion of the instrumentation
code for collecting profile information, the number of jump
instructions is increased and the overhead is increased.

In the method described in Non-patent Literature 1, an
instrumentation code is placed on directed edges to calculate,
only by addition and subtraction, integer values (path values)
representing execution paths passed from a start point to an
end point of a control flow graph. In the method described in
Non-patent Literature 1, the placement of the instrumentation
code is optimized by obtaining a maximum-cost spanning
tree of the control flow graph and inserting the instrumenta-
tion code on a directed edge not included in the maximum-
cost spanning tree. In the method described in Non-patent
Literature 1, however, the overhead is large because path
values are recorded every time in a memory at the end point of
the control flow graph.

In the method described in Non-patent Literature 2, an
instrumentation code on edges with high execution frequen-
cies is removed by using execution frequency information
obtained by different approaches when the instrumentation
code is placed by using the method described in Non-patent
Literature 1. However, since the method described in Non-
patent Literature 2 itself is a method of obtaining the execu-
tion frequency, there is a possibility of the execution fre-
quency information being not usable or seriously low in
accuracy. Also, in the method described in Non-patent Lit-
erature 2, the above-described path value is sampled at certain
time intervals instead of being recorded in a memory every
time. In the method described in Non-patent Literature 2,
therefore, the overhead due to the instrumentation code
becomes dominant as a result of largely reducing the over-
head for recording to the memory and, in particular, the over-
head in the case where insertion of the instrumentation code
is accompanied by insertion of jump instructions is consider-
able.

An object of the present invention is to reduce the above-
described overhead by minimizing the number of necessary
jump instructions at the time of insertion of an instrumenta-
tion code for collection of profile information (for example,
for calculation of path values in each of the methods
described in Non-patent Literatures 1 and 2).

Non-patent Literatures 1 and 2 are incorporated herein by
reference.

SUMMARY

The present invention provides a technique for obtaining
execution frequency information on execution paths in a con-
trol flow graph. This technique may include a method for

20

25

30

35

40

45

55

6

obtaining the execution frequency information, and a com-
puter, computer program and computer program product for
obtaining the execution frequency information.

In a first aspect according to the present invention, a
method for obtaining execution frequency information on
execution paths in a control flow graph, includes causing a
computer to execute the steps of:

reading into a memory a source code to be complied;

preparing a control flow graph from the source code read
into the memory, the preparing step including a step of modi-
fying the control flow graph by assigning zero to an edge
v—w between a basic block v in a precedent position (pre-
decessor basic block) and a basic block w following the
predecessor basic block v (successor basic block) in a case
where the successor basic block w has a predecessor basic
block x other than the predecessor basic block v, and where
the successor basic block w exists on a fall-through path from
the predecessor basic block x; and

obtaining the execution frequency information by using the
control flow graph modified by the modifying step.

In one embodiment of the present invention, the step of
modifying the control flow graph may further include a step
of inserting an instruction to add a path value in a successor
basic block w' other than the successor basic block w in a case
where the successor basic block w' other than the successor
basic block w following the predecessor basic block v has no
predecessor basic block other than the predecessor basic
block v.

In one embodiment of the present invention, the step of
modifying the control flow graph may further include a step
of inserting a basic block m on an edge v—w' between the
predecessor basic block v and a successor basic block w' other
than the successor basic block w and inserting an instruction
to add a path value in the basic block m in a case where the
successor basic block w' other than the successor basic block
w following the predecessor basic block v has a predecessor
basic block y other than the predecessor basic block v.

In one embodiment of the present invention, the step of
modifying the control flow graph may further include a step
of'inserting in the basic block m a jump instruction to make a
jump to the successor basic block w' if the successor basic
block w' exists on a fall-through path from the predecessor
basic block y.

In one embodiment of the present invention, the step of
modifying the control flow graph may further include a step
of modifying the control flow graph by taking out one suc-
cessor basic block wi from three or more successor basic
blocks {w1, . .., wn} if the three or more successor basic
blocks {w1, . .., wn} exist subsequently to the predecessor
basic block v, provided that the successor basic block wi has
a predecessor basic block x other than the predecessor basic
block v existing as a successor basic block following the
predecessor basic block v and exists on a fall-through path
from the predecessor basic block x, and by assigning zero to
an edge v—wi between the predecessor basic block v and the
successor basic block wi taken out.

In one embodiment of the present invention, the step of
modifying the control flow graph may further include a step
of inserting a basic block n on an edge v—wj between the
predecessor basic block v and a successor basic block wj
other than the successor basic block wi to which zero is
assigned, and inserting in the basic block n an instruction to
add a path value.

In one embodiment of the present invention, the step of
modifying the control flow graph may further include a step
of inserting a jump instruction to make a jump to the succes-
sor basic block wj immediately after the instruction to add a

US 9,250,880 B2

7

path value if the successor basic block wj does not exist on the
fall-through path from the predecessor basic block v, and if
the successor basic block wj has a predecessor basic block
other than the predecessor basic block v.

In one embodiment of the present invention, taking the one
successor basic block wi satisfying the condition out of the
three or more successor basic blocks {wl, . . ., wn} may
further include a step of taking out the successor basic block
wi with a higher execution frequency according to a state
where the execution frequencies of some of the three or more
successor basic blocks {w1, ..., wn} are known.

In a second aspect according to the present invention, a
computer for obtaining execution frequency information on
execution paths in a control flow graph includes:

a memory into which a source code to be complied is read;

control flow graph preparation means for preparing a con-

trol flow graph from the source code read into the
memory, the control flow graph preparation means
including control flow graph modification means for
modifying the control flow graph by assigning zero to an
edge v—w between a predecessor basic block v and a
successor basic block w following the predecessor basic
block v in a case where the successor basic block w has
a predecessor basic block x other than the predecessor
basic block v, and where the successor basic block w
exists on a fall-through path from the predecessor basic
block x; and

execution frequency information obtaining means for
obtaining the execution frequency information by using the
control flow graph modified by the control flow graph modi-
fication means.

In one embodiment of the present invention, the control
flow graph modification means may insert an instruction to
add a path value in a successor basic block w' other than the
successor basic block w in a case where the successor basic
block w' other than the successor basic block w following the
predecessor basic block v has no predecessor basic block
other than the predecessor basic block v.

In one embodiment of the present invention, the control
flow graph modification means may insert a basic block m on
an edge v—w' between a predecessor basic block y other than
the predecessor basic block v and a successor basic block w'
other than the successor basic block w and inserts an instruc-
tion to add a path value in the basic block m in a case where
the successor basic block w' other than the successor basic
block w following the predecessor basic block v has the
predecessor basic block y other than the predecessor basic
block v.

In one embodiment of the present invention, the control
flow graph modification means may insert in the basic block
m a jump instruction to make a jump to the successor basic
block w' if the successor basic block w' exists on a fall-
through path from the predecessor basic block y.

In one embodiment of the present invention, the control
flow graph modification means may modify the control flow
graph by taking out one successor basic block wi from three
or more successor basic blocks {w1, . .., wn} if the three or
more successor basic blocks {w1, ..., wn} exist subsequently
to the predecessor basic block v, provided that the successor
basic block wi has a predecessor basic block x other than the
predecessor basic block v existing as a successor basic block
following the predecessor basic block v and exists on a fall-
through path from the predecessor basic block x, and by
assigning zero to an edge v—wi between the predecessor
basic block v and the successor basic block wi taken out.

In one embodiment of the present invention, the control
flow graph modification means may insert an instruction to

25

40

45

8

add a path value on an edge v—wj between the predecessor
basic block v and a successor basic block wj other than the
successor basic block wi to which zero is assigned.

In one embodiment of the present invention, the control
flow graph modification means may insert a jump instruction
to make a jump to the successor basic block wj immediately
after the instruction to add a path value if the successor basic
block wj does not exist on the fall-through path from the
predecessor basic block v, and if the successor basic block wj
has a predecessor basic block other than the predecessor basic
block v.

In one embodiment of the present invention, taking the one
successor basic block wi satisfying the condition out of the
three or more successor basic blocks {wl, . . ., wn} may
include taking out the successor basic block wi with a higher
execution frequency according to a state where the execution
frequencies of some of the three or more successor basic
blocks {w1, . .., wn} are known.

In a third aspect according to the present invention, a com-
puter program or a computer program product for obtaining
execution frequency information on execution paths in a con-
trol flow graph causes a computer to execute the steps accord-
ing to the method in the first aspect.

The computer program according to the present invention
may be stored on any computer-readable recording medium
such as one of a plurality of flexible disks, an MO, a CD-
ROM, a DVD, a BD, a hard disk device, a memory medium
capable of being connected to a USB, a ROM, an MRAM or
a RAM. The computer program may be downloaded from
another computer, e.g., a server computer connected through
a communication circuit to be stored on the above-described
recording medium. The computer program may alternatively
be duplicated from a different recording medium to be stored.
The computer program according to the present invention
may be compressed or divided into a plurality of segments to
be stored on a single recording medium or a plurality of
recording mediums. It is to be noted that the computer pro-
gram product according to the present invention can of course
be provided in various forms. The computer program product
according to the present invention may include, for example,
a storage medium on which the above-described computer
program is recorded and a transmission medium for transmit-
ting the above-described computer program.

In the above outline of the present invention, not all the
necessary features of the present invention are enumerated. It
is to be noted that combinations or subcombinations of the
described components are also included in the present inven-
tion.

Needless to say, various modifications of the hardware
components of the computer used in the embodiment of the
present invention, which are made, for example, by using
combinations of the components and a plurality of machines
and by distributing the functions among the machines, can
easily be thought of by those skilled in the art. Such modifi-
cations are conceptions included in the idea embodied in the
present invention. However, the described components are
illustrations and not all the components are essential to the
prevent invention.

Also, the present invention can be implemented as hard-
ware, software or a combination of hardware and software. As
atypical example of carrying out of the invention by means of
a combination of hardware and software, carrying out in a
computer on which the above-described computer program is
installed may be mentioned. In such a case, the computer
program is loaded into the memory of the computer and
executed. The computer program thereby controls the com-
puter so that the computer executes processing according to

US 9,250,880 B2

9

the present invention. The computer program may be consti-
tuted by a group of instructions that can be expressed in a
language, a code or a notation freely selected. Such a group of
instructions directly enables the computer to perform certain
functions to execute processing according the embodiment of
the present invention or enables the computer to do so after
one of: conversion into a different language, code or notation
and duplication onto a different medium or both the conver-
sion and duplication of the computer program is performed.
In the present invention, the number of jump instructions
required when the above-described instrumentation code is
inserted can be reduced, thereby reducing the overhead.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG.11s adiagram showing an example of a computer used
in an embodiment of the present invention;

FIG. 2A is a schematic diagram showing a state where a
path value 0 is assigned to an edge v—w between a prede-
cessor basic block v and a successor basic block w in a control
flow graph before modification shown in FIG. 2A and an
instruction to add a path value in a successor basic block x in
the embodiment of the present invention;

FIG. 2B is a schematic diagram showing a state where a
path value 0 is assigned to the edge v—w between the prede-
cessor basic block v and the successor basic block w in a
control flow graph before modification shown in FIG. 2B and
a basic block fincluding an instruction to add a path value is
inserted on an edge v—x% between the predecessor basic block
v and the successor basic block x in the embodiment of the
present invention;

FIG. 2C is a schematic diagram showing a state where a
path value 0 is assigned to an edge v—w1 between the pre-
decessor basic block v and a successor basic block w1l in a
control flow graph before modification shown in FIG. 2C and
an instruction to add a path value in the successor basic block
x in the embodiment of the present invention;

FIG. 2D is a schematic diagram showing a state where a
path value 0 is assigned to the edge v—=w1 between the
predecessor basic block v and the successor basic block w1 in
a control flow graph before modification shown in FIG. 2D
and a basic block q including an instruction to add a path value
is inserted on the edge v—x between the predecessor basic
block v and the successor basic block x in the embodiment of
the present invention;

FIG. 3A is a flowchart for processing for obtaining execu-
tion frequency information on execution paths in the control
flow graph in the embodiment of the present invention;

FIG. 3B is a flowchart for processing for modifying the
control flow graph in the embodiment of the present inven-
tion;

FIG. 3C is a flowchart for processing for assigning values
to edges in the processing for modifying the control flow
graph in the embodiment of the present invention;

FIG. 4 shows an example of an algorithm for executing the
processing for assigning a value to an edge requiring insertion
of a new basic block in the processing for modifying the
control flow graph in the embodiment of the present inven-
tion;

FIG. 5 shows the results of comparison between the
throughput of a program that implements in a compiler an
algorithm enabling the method according to the prior art and
the throughput of a program that implements in a compiler the
algorithm enabling execution of the embodiment of the
present invention;

FIG. 6 is a diagram showing an example ofa function block
diagram of a computer for obtaining execution frequency

15

40

45

50

65

10

information on execution paths in a control flow graph, the
computer preferably having a hardware configuration accord-
ing to FIG. 1;

FIG. 7A is a schematic diagram showing a state where 1 is
assigned to the edge v—w between the predecessor basic
block v and the successor basic block w in a control flow
graph before modification shown in FIG. 7A and an instru-
mentation code is inserted in the prior art;

FIG. 7B is a schematic diagram showing a state where 1 is
assigned to the edge v—w between the predecessor basic
block v and the successor basic block w in a control flow
graph before modification shown in FIG. 7B and the instru-
mentation code is inserted in the prior art;

FIG. 7C is a schematic diagram showing a state where 1 is
assigned to the edge v—=w1 between the predecessor basic
block v and the successor basic block w1l in a control flow
graph before modification shown in FIG. 7C and the instru-
mentation code is inserted in the prior art; and

FIG. 7D is a schematic diagram showing a state where 1 is
assigned to the edge v—=w1 between the predecessor basic
block v and the successor basic block w1l in a control flow
graph before modification shown in FIG. 7D and the instru-
mentation code is inserted in the prior art.

DETAILED DESCRIPTION

An embodiment of the present invention will be described
with reference to the drawings. Through the figures referred
to below, the same reference characters indicate the same
objects unless otherwise specified. It is to be understood that
the embodiment of the present invention is for explanation of
a preferable aspect of the present invention with no intention
of limiting the scope of the present invention to one described
below.

A computer used in the embodiment of the present inven-
tion is not particularly specified if it is capable of obtaining
execution frequency information on execution paths in a con-
trol flow graph. The computer may be, for example, a desktop
computer, a notebook computer or an integrated personal
computer, or a tablet terminal or a smart phone (e.g., a tablet
terminal or a smart phone incorporating Windows (trade-
mark), Android (trademark) or iOS).

FIG. 1is adiagram showing an example of a computer used
in the embodiment of the present invention.

A computer (101) has a CPU (102) and a main memory
(103). These components are connected to a bus (104). The
CPU (102) is preferably one based on a 32-bit or 64-bit
architecture. The CPU (102) may be one in, for example, the
Core (trademark) i series, Core (trademark) 2 series, Atom
(trademark) series, Xeon (trademark) series, Pentium (trade-
mark) series or Celeron (trademark) series from Intel Corpo-
ration, A series, Phenom (trademark) series, Athlon (trade-
mark) series, Turion (trademark) series or Sempron
(trademark) series from AMD (Advanced Micro Devices,
Inc.), or Power (trademark) series from International Busi-
ness Machines Corporation.

A display (106), e.g., a liquid crystal display (LCD) is
connected to the bus (104) through a display controller (105).
The liquid crystal display (LCD) may be, for example, a
touch-panel display or floating touch display. The display
(106) is used to display through a suitable graphical user
interface an object to be displayed by the operation of a piece
of software running on the computer (101) (e.g., a computer
program in accordance with the embodiment of the present
invention or any of various computer programs running on the
computer (101)). The display (106) is capable of outputting
execution frequency information on execution paths on con-

US 9,250,880 B2

11

trol flow graphs modified in the embodiment of the present

invention. The execution frequency information is, for

example, information on how many times a branch is taken in

a branch instruction in a machine code and how many times

the branch is not taken in the instruction.

A disk (108), e.g., a hard disk or a solid-state drive (SSD)
can arbitrarily be connected to the bus (104), for example,
through a S-ATA or IDE controller (107).

A drive (109), e.g., a CD, DVD or BD drive can arbitrarily
be connected to the bus (104), for example, through the
S-ATA or IDE controller (107).

A keyboard (111) and a mouse (112) can arbitrarily be
connected to the bus (104) through a peripheral device con-
troller (110), e.g., a keyboard/mouse controller or a USB bus.

On the disk (108), an operating system, e.g., Windows
(trademark), UNIX (trademark) or MacOS (trademark), pro-
grams for providing a Java (trademark) platform such as
J2EE, a Java (trademark) application, a Java (trademark) vir-
tual machine (VM) and a Java (trademark) Just-in-Time (JIT)
compiler, a computer program according to the embodiment
of the present invention, and other programs and data are
stored so as to be downloadable to the main memory (103).

The disk (108) may be incorporated in the computer (101),
connected through a cable so that the computer (101) can
access the disk (108), or connected through a cable or wire-
less network so that the computer (101) can access the disk
(108).

The drive (109) is used to install a program, for example,
the operating system and an application or a computer pro-
gram according to the embodiment of the present invention
from a CD-ROM, a DVD-ROM or a BD onto the disk (108)
when required.

A communication interface (114) conforms, for example,
to the Ethernet (trademark) protocol. The communication
interface (114) is connected to the bus (104) through a com-
munication controller (113), serves for connection of the
computer (101) to acommunication circuit (115) in a cable or
wireless connection manner, and provides a network interface
layer for the TCP/IP protocol in the communication functions
of'the operating system for the computer (101). The commu-
nication circuit may be, for example, a wireless LAN envi-
ronment based on a wireless LAN connection standard, a
Wi-Fi wireless LAN environment such as IEEE802.11a/b/g/
n, or a portable telephone network environment (e.g., a 3G or
4G environment).

FIG. 2A (Example 1), FIG. 2B (Example 2), FIG. 2C
(Example 3) and FIG. 2D (Example 4) show, in a case where
a predecessor basic block x other than a predecessor basic
block v precedes a successor basic block w, and the successor
basic block w exists on a fall-through path from the prede-
cessor basic block x, various aspects of modifying a control
flow graph by assigning zero to an edge v—w between the
predecessor basic block v and the successor basic block w. In
the case where zero is assigned to the edge v—w, no instruc-
tion to add a path value to the edge v—w is added.

The various aspects of modifying control flow graphs are
generally grouped into the following three aspects:

(1) an aspect in which if a successor basic block w' other than
the successor basic block w following the predecessor
basic block v has no predecessor basic block other than the
predecessor basic block v, then an instruction to add a path
value is inserted in the successor basic block w',

(2) an aspect in which if a successor basic block w' other than
the successor basic block w following the predecessor
basic block v has a predecessor basic block y other than the
predecessor basic block v, then a basic block m is inserted
on an edge v—w' between the predecessor basic block v

10

15

20

25

30

35

40

45

50

55

60

65

12

and the successor basic block w' and an instruction to add

a path value is inserted in the basic block m, and
(3) an aspect in which if three or more successor basic blocks

{wl, ..., wn} exist subsequently to the predecessor basic
block v, then one successor basic block wi in the three or
more successor basic blocks {w1, . . ., wn} is taken out
provided that the successor basic block wi has a predeces-
sor basic block x other than the predecessor basic block v
existing as a successor basic block following the predeces-
sor basic block v and exists on the fall-through path from
the predecessor basic block x, and zero is assigned to an
edge v—wi between the predecessor basic block v and the
successor basic block wi taken out.

Inthe above-described aspect (1), if a successor basic block
w' other than the successor basic block w following the pre-
decessor basic block v has no predecessor basic block other
than the predecessor basic block v, then an instruction to add
a path value is inserted in the successor basic block w'. The
aspect (1) corresponds to an aspect in Example 1 described
below, in which a successor basic block x following a prede-
cessor basic block v (which successor basic block x is also a
predecessor basic block precedent to another successor basic
block w, and which successor basic block x corresponds to the
above-described successor basic block w') has no predecessor
basic block other than the predecessor basic block v and,
therefore, an instruction to add a path value is inserted in the
successor basic block x (corresponding to the above-de-
scribed successor basic block w'). Similarly, the aspect (1)
corresponds to an aspect in Example 3 described below, in
which a successor basic block x following a predecessor basic
block v (which successor basic block x is also a predecessor
basic block precedent to another successor basic block wl,
and which successor basic block x corresponds to the above-
described successor basic block w') has no predecessor basic
block other than the predecessor basic block v and, therefore,
an instruction to add a path value is inserted in the successor
basic block x (corresponding to the above-described succes-
sor basic block w").

Inthe above-described aspect (2), if a successor basic block
w' other than the successor basic block w following the pre-
decessor basic block v has a predecessor basic block y other
than the predecessor basic block v, then a basic block m is
inserted on an edge v—w' between the predecessor basic
block v and the successor basic block w' and an instruction to
add a path value is inserted in the basic block m. The aspect
(2) corresponds to an aspect in Example 2 described below, in
which a successor basic block x following the predecessor
basic block v (which successor basic block x is also a prede-
cessor basic block precedent to another successor basic block
w, and which successor basic block x corresponds to the
above-described successor basic block w') has a predecessor
basic block y other than the predecessor basic block v and,
therefore, a basic block f (corresponding to the above-de-
scribed basic block m) is inserted on an edge v—x (corre-
sponding to the above-described edge v—w') between the
above-described predecessor basic block v and the above-
described successor basic block x (corresponding to the
above-described successor basic block w') and an instruction
to add a path value is inserted in the basic block f. Similarly,
the aspect (2) corresponds to an aspect in Example 3
described below, in which a successor basic block w2 follow-
ing the predecessor basic block v has a predecessor basic
block y other than the predecessor basic block v and, there-
fore, a basic block p (corresponding to the above-described
basic block m) is inserted on an edge v—>w2 between the
above-described predecessor basic block v and the above-
described successor basic block w2 and an instruction to add

US 9,250,880 B2

13

a path value is inserted in the basic block p. Similarly, the
aspect (2) corresponds to an aspect in Example 4 described
below, in which a successor basic block x following the
predecessor basic block v (which successor basic block x is
also a predecessor basic block precedent to another successor
basic block w1, and which successor basic block x corre-
sponds to the above-described successor basic block w') has a
predecessor basic block y other than the predecessor basic
block v and, therefore, a basic block q (corresponding to the
above-described basic block m) is inserted on an edge v—x
(corresponding to the above-described edge v—w') between
the above-described predecessor basic block v and the above-
described successor basic block x (corresponding to the
above-described successor basic block w') and an instruction
to add a path value is inserted in the basic block q, and
corresponds to another aspect in Example 4 in which a suc-
cessor basic block w2 following the predecessor basic block
v has a predecessor basic block y other than the predecessor
basic block v and, therefore, a basic block r (corresponding to
the above-described basic block m) is inserted on an edge
v—w2 between the above-described predecessor basic block
v and the above-described successor basic block w2 and an
instruction to add a path value is inserted in the basic block r.

In the above-described aspect (3), if three or more succes-
sor basic blocks {w1, ..., wn} exist following the predeces-
sor basic block v, then one successor basic block wi in the
three or more successor basic blocks {w1, . .., wn} is taken
out provided that the successor basic block wi has a prede-
cessor basic block x other than the predecessor basic block v
existing as a successor basic block following the predecessor
basic block v and exists on the fall-through path from the
predecessor basic block x, and zero is assigned to an edge
v—wi between the predecessor basic block v and the succes-
sor basic block wi taken out. The above-described aspect (3)
corresponds to another aspect in Example 3 described below,
in which three successor basic blocks {x, w1l and w2} exist
subsequently to the predecessor basic block v; one successor
basic block w1 in the three successor basic blocks {x, w1 and
w2} is therefore taken out provided that the successor basic
block w1 has a predecessor basic block x other than the
predecessor basic block v following the predecessor basic
block v (which predecessor basic block x is also a successor
basic block following the predecessor basic block v, and
which predecessor basic block x, therefore, is also the above-
described successor basic block x) and exists on the fall-
through path from the predecessor basic block x; and zero is
assigned to an edge v—w1 between the predecessor basic
block v and the successor basic block w1 taken out. Similarly,
the above-described aspect (3) corresponds to another aspect
in Example 4 described below, in which three successor basic
blocks {x, w1l and w2} exist subsequently to the predecessor
basic block v; one successor basic block w1 in the three
successor basic blocks {x, w1 and w2} is therefore taken out
provided that the successor basic block w1 has a predecessor
basic block x other than the predecessor basic block v follow-
ing the predecessor basic block v (which predecessor basic
block x is also a successor basic block following the prede-
cessor basic block v, and which predecessor basic block x,
therefore, is also the above-described successor basic block
x) and exists on the fall-through path from the predecessor
basic block x; and zero is assigned to an edge v—w1 between
the predecessor basic block v and the successor basic block
w1 taken out.

FIGS. 2(A) to 2(D) are schematic diagrams showing
assignment of 0 to the edge between the predecessor basic
block v and the successor basic block w or w1 and insertion of
an instrumentation code in accordance with the embodiment

10

15

20

25

30

35

40

45

50

55

60

65

14

of'the present invention in control flow graphs (201, 211, 221,
and 231) before modification respectively shown in FIGS.
2(A) to 2(D). Description will be made below of how the
control flow graphs (201, 211, 221, and 231) respectively
shown in FIGS. 2(A) to 2(D) are modified by insertion of the
instrumentation code in accordance with the embodiment of
the present invention.

Referring to FIG. 2A (Example 1), the control flow graph
(201) before modification is the same as the control flow
graph (701) shown in FIG. 7A. The description of the control
flow graph (701) shown in FIG. 7A should therefore be
referred to as description of the control flow graph (201)
before modification.

With respect to the control flow graph (201) before modi-
fication, the computer (101) determines that the predecessor
basic block x other than the predecessor basic block v pre-
cedes the successor basic block w following the predecessor
basic block v, and that the successor basic block w exists on
the fall-through path from the predecessor basic block x. The
fall-through path is not a destination to be reached by a skip
through a branch but a path through which a transition is made
without any branch or when no branch is established. Accord-
ingly, the computer (101) assigns a path value 0 to the edge
v—w between the predecessor basic block v and the succes-
sor basic block w in the control flow graph (201) before
modification. The computer (101) also assigns a path value 1
to the edge v—x between the predecessor basic block v and
the successor basic block x (which is also a predecessor basic
block precedent to another successor basic block w, and
which is also referred to as the above-described precedent
basic block x). The computer also assigns a path value 0 to the
other edge. Accordingly, in a control flow graph (202), the
path value 0 is assigned to the edge v—w and the path value
1 is assigned to the edge v—x.

Next, the computer (101) performs an operation to insert
the instrumentation code in the control flow graph (202).

Since the path value 0 is assigned to the edge v—w between
the predecessor basic block v and the successor basic block w
(that is, a value to be added or subtracted on the edge v—w is
0), the computer (101) determines that there is no need to
insert any instrumentation code on the edge v—=w. The com-
puter (101) also determines that there is no need to insert any
basic block on the edge v—w. Similarly, the computer (101)
determines that there is no need to insert any instrumentation
code with respect to the other edge to which the path value 0
is assigned.

Since the path value 1 is assigned to the edge v—x, the
computer (101) inserts an instruction to add the path value
(r+=1) in the successor basic block x, for example, at the head
of'the same. The computer (101) inserts no jump instruction
in the successor basic block x since no jump instruction is
required in the successor basic block x.

As described above, in Example 1, the successor basic
block x following the predecessor basic block v (which suc-
cessor basic block x is also a predecessor basic block prece-
dent to the another successor basic block w, and which suc-
cessor basic block x corresponds to the above-described
successor basic block w') has no predecessor basic block
other than the predecessor basic block v. The computer (101)
therefore inserts an instruction to add a path value in the
successor basic block x (corresponding to the above-de-
scribed successor basic block w').

As aresult, in a modified control flow graph (203) shown in
FIG. 2A, the number of jump instructions is not increased by
insertion of the instrumentation code. On the other hand, in
the modified control flow graph (703) shown in FIG. 7A, the
number of jump instructions is increased by 1 (jmp w) (704)

US 9,250,880 B2

15

as a result of insertion of the instrumentation code. Thus, in
the case of modification of the control flow graph (201) into
the control flow graph (203) in accordance with the embodi-
ment of the present invention, the number of jump instruc-
tions can be reduced (from 1 to 0) in comparison with the
method according to Prior Art 1 shown in FIG. 7A, thereby
reducing the overhead.

Referring to FIG. 2B (Example 2), the control flow graph
(211) before modification is the same as the control flow
graph (711) shown in FIG. 7B. The description of the control
flow graph (711) shown in FIG. 7B should therefore be
referred to as description of the control flow graph (211)
before modification.

With respect to the control flow graph (211) before modi-
fication, the computer (101) determines that the predecessor
basic block x other than the predecessor basic block v pre-
cedes the successor basic block w following the predecessor
basic block v, and that the successor basic block w exists on
the fall-through path from the predecessor basic block x.
Accordingly, the computer (101) assigns a path value 0 to the
edge v—w between the predecessor basic block v and the
successor basic block w in the control flow graph (211) before
modification. The predecessor basic block y precedes the
successor basic block x (which is also a predecessor basic
block precedent to the other successor basic block w, and
which is also referred to as the above-described predecessor
basic block x). The computer (101) therefore assigns a path
value 1 to the edge v—x between the predecessor basic block
v and the successor basic block x and assigns a path value 2 to
the edge y—x between the predecessor basic block y and the
successor basic block x. The computer also assigns a path
value 0 to the other edge. Accordingly, in a control flow graph
(212), the path value 0 is assigned to the edge v—w; the path
value 1, to the edge v—x; and the path value 2, to the edge
y—=X.

Next, the computer (101) performs an operation to insert
the instrumentation code in the control flow graph (212).

Since the path value 0 is assigned to the edge v—w between
the predecessor basic block v and the successor basic block w
(that is, a value to be added or subtracted on the edge v—w is
0), the computer (101) determines that there is no need to
insert any instrumentation code on the edge v—w. The com-
puter (101) also determines that there is no need to insert any
basic block on the edge v—w. Similarly, the computer (101)
determines that there is no need to insert any instrumentation
code with respect to the other edge to which the path value 0
is assigned.

Since the path value 1 is assigned to the edge v—x between
the predecessor basic block v and the successor basic block x,
and since the predecessor basic block y precedes the succes-
sor basic block x, the computer (101) inserts on the edge v—x
a basic block f (214) including an instruction to add the path
value (r+=1). The computer (101) inserts no jump instruction
in the inserted basic block f(214) since no jump instruction is
required in the inserted basic block f (214). That is, the
inserted basic block f(214) includes no jump instruction.

Similarly, since the path value 2 is assigned to the edge
y—x between the predecessor basic block y and the successor
basic block x, the computer (101) inserts on the edge y—=x a
basic block g (215) including an instruction to add the path
value (r+=2). The inserted basic block g (215) includes a jump
instruction (jmp X) to make a jump to the successor basic
block x as well as the instruction to add the path value (r+=2).

As described above, in Example 2, the successor basic
block x following the predecessor basic block v (which suc-
cessor basic block x is also a predecessor basic block prece-
dent to the another successor basic block w, and which suc-

10

20

25

30

35

40

45

50

55

60

65

16

cessor basic block x corresponds to the above-described
successor basic block w') has the predecessor basic block y
other than the predecessor basic block v. The computer (101)
therefore inserts the basic block f (corresponding to the
above-described basic block m) on the edge v—x (corre-
sponding to the above-described edge v—w') between the
above-described predecessor basic block v and the above-
described successor basic block x (corresponding to the
above-described successor basic block w'), and inserts an
instruction to add a path value in this basic block f.

As aresult, in a modified control flow graph (213) shown in
FIG. 2B, the number of jump instructions is increased by one
(jmp x) (215) as a result of insertion of the instrumentation
code. On the other hand, in the modified control flow graph
(713) shown in FIG. 7B, the number of jump instructions is
increased by 2 (jmp w and jmp x) (714 and 715, respectively)
as a result of insertion of the instrumentation code. Thus, in
the case of modification of the control flow graph (211) into
the control flow graph (213) in accordance with the embodi-
ment of the present invention, the number of jump instruc-
tions can be reduced by one (from 2 to 1) in comparison with
the method according to Prior Art 2 shown in FIG. 7B,
thereby reducing the overhead.

Referring to FIG. 2C (Example 3), the control flow graph
(221) before modification is the same as the control flow
graph (721) shown in FIG. 7C. The description of the control
flow graph (721) shown in FIG. 7C should therefore be
referred to as description of the control flow graph (221)
before modification.

With respect to the control flow graph (221) before modi-
fication, the computer (101) determines that the predecessor
basic block x other than the predecessor basic block v pre-
cedes the successor basic block w1 following the predecessor
basic block v, and that the successor basic block w1 exists on
the fall-through path from the predecessor basic block x.
Accordingly, the computer (101) assigns a path value 0 to the
edge v—=w1 between the predecessor basic block v and the
successor basic block w1 in the control flow graph (221)
before modification. The computer (101) also assigns a path
value 1 to the edge v—x between the predecessor basic block
v and the successor basic block x (which is also a predecessor
basic block precedent to the another successor basic block w
and also referred to as the above-described predecessor basic
block x) and assigns a path value 2 to the edge v—=w2 between
the predecessor basic block v and the successor basic block
w2. The computer also assigns a path value 0 to the other
edges. Accordingly, in a control flow graph (222), the path
value 0 is assigned to the edge v—=w1; the path value 1, to the
edge v—x; and the path value 2, to the edge v—>w2.

Next, the computer (101) performs an operation to insert
the instrumentation code in the control flow graph (222).

Since the path value 0 is assigned to the edge v—wl
between the predecessor basic block v and the successor basic
block w1 (thatis, a value to be added or subtracted on the edge
v—wl1 is 0), the computer (101) determines that there is no
need to insert any instrumentation code on the edge v—wl.
The computer (101) also determines that there is no need to
insert any basic block on the edge v—w1. Similarly, the
computer (101) determines that there is no need to insert any
instrumentation code with respect to the other edges to which
the path value 0 is assigned.

Since the path value 1 is assigned to the edge v—x between
the predecessor basic block v and the successor basic block x,
the computer (101) inserts an instruction to add the path value
(r+=1) in the successor basic block x, for example, at the head
of the same.

US 9,250,880 B2

17

Similarly, since the path value 2 is assigned to the edge
v—w2 between the predecessor basic block v and the succes-
sor basic block w2, the computer (101) inserts on the edge
v—w2 a basic block p (225) including an instruction to add
the path value (r+=2). The inserted basic block p (225)
includes a jump instruction (jmp w2) to make a jump to the
successor basic block w2 as well as the instruction to add the
path value (r+=2).

As described above, in Example 3, the successor basic
block x following the predecessor basic block v (which suc-
cessor basic block x is also a predecessor basic block prece-
dent to the another successor basic block w1, and which
successor basic block x corresponds to the above-described
successor basic block w') has no predecessor basic block
other than the predecessor basic block v. The computer (101)
therefore inserts an instruction to add a path value in the
successor basic block x (corresponding to the above-de-
scribed successor basic block w').

Also, in Example 3, the successor basic block w2 following
the predecessor basic block v has the predecessor basic block
y other than the predecessor basic block v. The computer
(101) therefore inserts the basic block p (corresponding to the
above-described basic block m) on the edge v—=w2 between
the predecessor basic block v and the predecessor basic block
w2, and inserts in the basic block p an instruction to add a path
value.

Also, in Example 3, the predecessor basic block w2 (cor-
responding to the successor basic block w') exists on the
fall-through path from the predecessor basic block y. The
computer (101) therefore inserts in the above-described basic
block p (corresponding to the above-described basic block m)
a jump instruction to make a jump to the basic block w2.

Also, in Example 3, the three successor basic blocks {x,
wl, and w2} exist subsequently to the predecessor basic
block v. The computer (101) therefore takes out one successor
basic block w1 in the three successor basic blocks {x, w1, and
w2} provided that the successor basic block w1 has a prede-
cessor basic block x other than the predecessor basic block v
following the predecessor basic block v (which predecessor
basic block x is also a successor basic block following the
predecessor basic block v, and which predecessor basic block
X, therefore, is also the above-described successor basic block
x) and exists on the fall-through path from the predecessor
basic block x, and assigns zero to the edge v—=w1 between the
predecessor basic block v and the successor basic block w1
taken out.

Also, in Example 3, the computer (101) inserts the basic
block p (corresponding to the above-described basic block n)
on the edge v—w2 between the predecessor basic block v and
the successor basic block w2 other than the successor basic
block w1 to which zero is assigned as described above, and
inserts an instruction to add a path value in the basic block p.

Also, in Example 3, the successor basic block w2 does not
exist on the fall-through path from the predecessor basic
block v, and the successor basic block w2 has the predecessor
basic block y other than the predecessor basic block v. The
computer (101) therefore inserts immediately after the
instruction to add a path value in the above-described basic
block p (corresponding to the above-described basic block n)
ajump instruction to make a jump to the successor basic block
w2.

As aresult, in a modified control flow graph (223) shown in
FIG. 2C, the number of jump instructions is increased by one
(jmp w2) (225) as a result of insertion of the instrumentation
code. On the other hand, in the modified control flow graph
(723) shown in FIG. 7C, the number of jump instructions is
increased by 2 (jmp w1 and jmp w2) (724 and 725, respec-

5

10

15

20

25

30

40

45

50

55

60

65

18

tively) as a result of the insertion of the instrumentation code.
Thus, in the case of modification of the control flow graph
(221) into the control flow graph (223) in accordance with the
embodiment of the present invention, the number of jump
instructions can be reduced by one (from 2 to 1) in compari-
son with the method according to Prior Art 3 shown in FIG.
7C, thereby reducing the overhead.

An example has been described with reference to FIG. 2C
in which the path value 0 is assigned to the edge v—wl
between the predecessor basic block v and the successor basic
block wl. That is, an example has been described in which
three successor blocks {x, w1, and w2} exist subsequently to
the predecessor basic block v; one successor basic block w1l
in the three successor basic blocks {x, w1, and w2} is there-
fore taken out provided that the successor basic block w1 has
a predecessor basic block x other than the predecessor basic
block v following the predecessor basic block v (which pre-
decessor basic block x is also a successor basic block follow-
ing the predecessor basic block v, and which predecessor
basic block x, therefore, is also the above-described successor
basic block x) and exists on the fall-through path from the
predecessor basic block x; and zero is assigned to the edge
v—w1 between the predecessor basic block v and the succes-
sor basic block w1 taken out.

Alternatively, in a case where a plurality of successor basic
blocks {w1, . .., wn} exist subsequently to the predecessor
basic block v, one successor basic block wi in the three or
more successor basic blocks {wl, ..., wn} can be taken out
provided that the successor basic block wi has a predecessor
basic block x other than the predecessor basic block v follow-
ing the predecessor basic block v (which predecessor basic
block x is also a successor basic block following the prede-
cessor basic block v, and which predecessor basic block x,
therefore, is also the above-described successor basic block
x) and exists on the fall-through path from the predecessor
basic block x, and zero can be assigned to the edge v—wi
between the above-described predecessor basic block v and
the successor basic block wi taken out. Taking the above-
described successor basic block wi satisfying the above-de-
scribed condition out of the plurality of successor basic
blocks {w1, ..., wn} is performed, for example, by taking out
the successor basic block wi with a higher execution fre-
quency according to a state where the execution frequencies
of some of the plurality of successor basic blocks {w1, . . .,
wn} are known (for example, in a case where the execution
frequencies of some of the plurality of successor basic blocks
{wl, . .., wn} are determined in advance by some other
method).

Referring to FIG. 2D (Example 4), the control flow graph
(231) before modification is the same as the control flow
graph (731) shown in FIG. 7D. The description of the control
flow graph (731) shown in FIG. 7D should therefore be
referred to as description of the control flow graph (231)
before modification.

With respect to the control flow graph (231) before modi-
fication, the computer (101) determines that the predecessor
basic block x other than the predecessor basic block v pre-
cedes the successor basic block w1 following the predecessor
basic block v, and that the successor basic block w1 exists on
the fall-through path from the predecessor basic block x.
Accordingly, the computer (101) assigns a path value 0 to the
edge v—=w1 between the predecessor basic block v and the
successor basic block w1 in the control flow graph (231)
before modification. The computer (101) also assigns a path
value 1 to the edge v—x between the predecessor basic block
v and the successor basic block x (which is also a predecessor
basic block precedent to the another successor basic block w,

US 9,250,880 B2

19

and which is also referred to as the above-described prede-
cessor basic block x), assigns a path value 2 to the edge v—=w2
between the predecessor basic block v and the successor basic
block w2, and assigns a path value 3 to the edge y—=x between
the predecessor basic block y and the successor basic block x.
The computer also assigns a path value 0 to the other edges.
Accordingly, in a control flow graph (232), the path value 0 is
assigned to the edge v—=w1; the path value 1, to the edge
v—X; the path value 2, to the edge v—w?2; and the path value
3, to the edge y—x.

Next, the computer (101) performs an operation to insert
the instrumentation code in the control flow graph (232).

Since the path value 0 is assigned to the edge v—wl
between the predecessor basic block v and the successor basic
block w1 (thatis, a valueto be added or subtracted on the edge
v—=wl1 is 0), the computer (101) determines that there is no
need to insert any instrumentation code on the edge v—wl1.
The computer (101) also determines that there is no need to
insert any basic block on the edge v—wl. Similarly, the
computer (101) determines that there is no need to insert any
instrumentation code with respect to the other edges to which
the path value 0 is assigned.

Since the path value 1 is assigned to the edge v—x between
the predecessor basic block v and the successor basic block x,
and since the predecessor basic block y precedes the succes-
sor basic block x, the computer (101) inserts a basic block q
(234) including an instruction to add the path value (r+=1) on
the edge v—x. The computer (101) inserts no jump instruc-
tion in the inserted basic block q (234) since no jump instruc-
tion is required in the inserted basic block g.

Similarly, since the path value 2 is assigned to the edge
v—w2 between the predecessor basic block v and the succes-
sor basic block w2, the computer (101) inserts a basic block r
(235) including an instruction to add the path value (r+=2) on
the edge v—=w2. The inserted basic block r (235) includes a
jump instruction to make a jump to the predecessor basic
block w2 (jmp w2) as well as the instruction to add the path
value (r+=2).

Similarly, since the path value 3 is assigned to the edge
y—x between the predecessor basic block y and the successor
basic block x, the computer (101) inserts basic block s (236)
including an instruction to add the path value (r+=3) on the
edge y—x. The inserted basic block s (236) includes a jump
instruction to make a jump to the predecessor basic block x
(jmp x) as well as the instruction to add the path value (r+=3).

As described above, in Example 4, the successor basic
block x following the predecessor basic block v (which suc-
cessor basic block x is also a predecessor basic block prece-
dent to the another successor basic block w1, and which
successor basic block x corresponds to the above-described
successor basic block w') has the predecessor basic block y
other than the predecessor basic block v. The computer (101)
therefore inserts the basic block q (corresponding to the
above-described basic block m) on the edge v—x (corre-
sponding to the above-described edge v—w') between the
above-described predecessor basic block v and the above-
described successor basic block x (corresponding to the
above-described successor basic block w'), and inserts an
instruction to add a path value in the basic block q. Also, in
Example 4, the successor basic block w2 following the pre-
decessor basic block v has the predecessor basic block y other
than the predecessor basic block v, the computer (101) there-
fore inserts the basic block r (corresponding to the above-
described basic block m) on the edge v—=w2 between the
predecessor basic block v and the successor basic block w2,
and inserts an instruction to add a path value in the basic block
r.

10

15

20

25

30

35

40

45

50

55

60

65

20

Further, in Example 4, the successor basic block w2 (cor-
responding to the above-described successor basic block w')
exists on the fall-through path from a predecessor basic block
7. The computer (101) therefore inserts in the above-de-
scribed basic block r (corresponding to the above-described
basic block m) a jump instruction to make a jump to the basic
block w2.

Also, in Example 4, the three successor basic blocks {x,
wl, and w2} exist subsequently to the predecessor basic
block v. The computer (101) therefore takes out one successor
basic block w1 in the three successor basic blocks {x, w1, and
w2} provided that the successor basic block w1 has a prede-
cessor basic block x other than the predecessor basic block v
following the predecessor basic block v (which predecessor
basic block x is also a successor basic block following the
predecessor basic block v, and which predecessor basic block
X, therefore, is also the above-described successor basic block
x) and exists on the fall-through path from the predecessor
basic block x, and assigns zero to the edge v—=w1 between the
predecessor basic block v and the successor basic block w1l
taken out.

Also, in Example 4, the computer (101) inserts the basic
block r (corresponding to the above-described basic block n)
on the edge v—>w2 between the predecessor basic block v and
the successor basic block w2 other than the successor basic
block w1 to which zero is assigned as described above, and
inserts an instruction to add a path value in the basic block r.

Also, in Example 4, the successor basic block w2 does not
exist on the fall-through path from the predecessor basic
block v, and the successor basic block w2 has the predecessor
basic block z other than the predecessor basic block v. The
computer (101) therefore inserts immediately after the
instruction to add a path value in the above-described basic
block r (corresponding to the above-described basic block n)
ajump instruction to make a jump to the successor basic block
w2.

As aresult, in a modified control flow graph (233) shown in
FIG. 2D, the number of jump instructions is increased by two
(jmp w2 and jmp x) (235 and 236) as a result of insertion of
the instrumentation code. On the other hand, in the modified
control flow graph (733) shown in FIG. 7D, the number of
jump instructions is increased by 3 (jmp w1, jmp w2, and jmp
x) (734, 735, and 736, respectively) as a result of insertion of
the instrumentation code. Thus, in the case of modification of
the control flow graph (231) into the control flow graph (233)
in accordance with the embodiment of the present invention,
the number of jump instructions can be reduced by one (from
3 to 2) in comparison with the method according to Prior Art
4 shown in FIG. 7D, thereby reducing the overhead.

An example has been described with reference to FIG. 2D
in which the path value 0 is assigned to the edge v—wl
between the predecessor basic block v and the successor basic
block wl. That is, an example has been described in which
three successor blocks {x, w1, and w2} exist subsequently to
the predecessor basic block v; one successor basic block w1l
in the three successor basic blocks {x, w1, and w2} is there-
fore taken out provided that the successor basic block w1 has
a predecessor basic block x other than the predecessor basic
block v following the predecessor basic block v (which pre-
decessor basic block x is also a successor basic block follow-
ing the predecessor basic block v, and which predecessor
basic block x, therefore, is also the above-described successor
basic block x) and exists on the fall-through path from the
predecessor basic block x; and zero is assigned to the edge
v—w1 between the predecessor basic block v and the succes-
sor basic block w1 taken out.

US 9,250,880 B2

21
Alternatively, in a case where a plurality of successor basic
blocks {w1, ..., wn} exist subsequently to the predecessor

basic block v, one successor basic block wi in the plurality of
successor basic blocks {wl, . . ., wn} can be taken out
provided that the successor basic block wi has a predecessor
basic block x other than the predecessor basic block v follow-
ing the predecessor basic block v (which predecessor basic
block x is also a successor basic block following the prede-
cessor basic block v, and which predecessor basic block x,
therefore, is also the above-described successor basic block
x) and exists on the fall-through path from the predecessor
basic block x, and zero can be assigned to the edge v—wi
between the above-described predecessor basic block v and
the successor basic block wi taken out. Taking the above-
described successor basic block wi satisfying the above-de-
scribed condition out of the plurality of successor basic
blocks {w1, ..., wn} is performed, for example, by taking out
the successor basic block wi with a higher execution fre-
quency according to a state where the execution frequencies
of some of the plurality of successor basic blocks {w1, . . .,
wn} are known (for example, in a case where the execution
frequencies of some of the plurality of successor basic blocks
{wl, . .., wn} are determined in advance by some other
method).

FIG. 3A shows a flowchart for a process of obtaining
execution frequency information on execution paths in a con-
trol flow graph in accordance with the embodiment of the
present invention.

In step 301, the computer (101) starts processing for
obtaining execution frequency information on execution
paths in a control flow graph.

In step 302, the computer (101) reads a source code to be
compiled, given on a function or method basis to be profiled,
for example, from a storage medium (391) storing the source
code into the main memory (103).

In step 303, the computer (101) prepares a control flow
graph from the source code read into the memory. Preparation
of'the control flow graph may be performed by a conventional
technique selected as desired. The control flow graph pre-
pared in step 303 is, for example, the control flow graphs
(201, 211, 221, and 231) (before modification) respectively
shown in FIGS. 2A, 2B, 2C, and 2D.

In step 304, the computer (101) is capable of determining
on an optional basis whether to modify the control flow graph
prepared in step 303 in accordance with the embodiment of
the present invention. The computer (101) advances the pro-
cess to step 305 in the case of modifying the control flow
graph. The computer (101) advances the process to step 306
in the case of not modifying the control flow graph. Since step
304 is optional, the computer may advance the process from
processing in step 303 directly to processing in step 305.

In step 305, the computer (101) performs processing for
modifying the control flow graph prepared in step 303 in
accordance with the embodiment of the present invention.
Modification processing in step 305 is described below in
detail with reference to FIGS. 3B and 3C.

In step 306, the computer (101) obtains execution fre-
quency information by using the control flow graph modified
in step 305. In the case where step 305 is not carried out, the
computer (101) obtains execution frequency information by
using the control flow graph prepared in step 303.

In step 307, the computer (101) ends the process of obtain-
ing execution frequency information on the execution paths
in the control flow graph.

FIG. 3B shows a flowchart for a process of modifying, in
accordance with the embodiment of the present invention, the
control flow graph prepared in step 303 shown in FIG. 3A.

10

15

20

25

30

35

40

45

50

55

60

65

22

The flowchart shown in FIG. 3B shows a process in which
in order to see each of basic blocks in the control flow graph
from the end point, determination is made as to whether or not
the basic block is the end of the control flow graph, and in
which if the basic block is not the end, a path value is assigned
to an edge from the basic block which is not the end.

In step 311, the computer (101) starts processing for modi-
fying the control flow graph.

In step 312, the computer (101) prepares a list of all the
basic blocks (BBList) in the control flow graph sorted in a
reverse topological order, the number of basic blocks (N) in
the control flow graph, and a variable (I; initial value=0) used
to take out the basic blocks one by one from the list of all the
basic blocks (BBList). The above-mentioned Non-patent Lit-
erature 2 should be referred to for details of the reverse topo-
logical order.

In step 313, the computer (101) determines whether or not
the above-mentioned number of basic blocks (N) is larger
than the above-mentioned variable (I). Step 313 is a loop for
performing processing from step 313 to 318 withrespectto all
the basic blocks in the above-described control flow graph. If
the number of basic blocks (N) is larger than the variable (1),
the computer (101) advances the process to step 314. If the
number of basic blocks (N) is not larger than the variable (I)
(that is, if the variable (I) is larger than the number of basic
blocks (N)), the computer advances (101) the process to end
step 319.

In step 314, the computer (101) takes out one basic block V
from the BBList according to the case where the number of
basic blocks (N) is larger than the variable (I).

In step 315, for assignment of a value (0 or 1) to the basic
block V, the computer (101) determines whether or not the
basic block V taken out is the basic block at the end (exit) of
the control flow graph. If the basic block V taken out is not the
basic block at the end of the control flow graph, the computer
(101) advances the process to step 316. If the basic block V
taken out is the basic block at the end of the control flow
graph, the computer (101) advances the process to step 317.

In step 316, the computer (101) assigns a value O to the
basic block V which is not at the end of the control flow graph
(NumPath[V]=0) according to the case where the basic block
V taken out is not the basic block at the end. This value Ois a
value assigned to the basic block V but it is replaced with a
unique value for each basic block in the control flow graph in
step 328 shown in FIG. 3C.

In step 317, the computer (101) assigns a value 1 to the
basic block V which is at the end of the control flow graph
(NumPath[V]=1) according to the case where the basic block
V taken out is the basic block at the end.

In step 318, the computer (101) performs processing for
assigning a path value to an edge from the basic block V to
which the value O is assigned in step 316 (that is, in the case
where the basic block V is not at the end of the control flow
graph). That is, in step 318, processing for assigning a path
value to an edge from a predecessor basic block other than the
basic block at the end is performed. Processing in step 318 for
assigning a path value to an edge from the basic block V not
at the end is described below in detail with reference to a
flowchart shown in FIG. 3C.

In step 319, the computer (101) ends the processing for
modifying the control flow graph according to the case where
the variable (I) is larger than the number of basic blocks (N)
in the control flow graph in the determination step in step 313.

FIG. 3C shows a flowchart for a processing of assigning
values to edges in processing for modifying the control flow
graph in accordance with the embodiment of the present
invention.

US 9,250,880 B2

23

FIG. 3C shows processing for giving a path value to an
edge from the basic block V to which the value O is assigned
in step 316 shown in FIG. 3B (that is, the basic block V not at
the end).

In step 321, the computer (101) starts processing for
assigning a value to the edge.

In step 322, the computer (101) determines whether the
condition is met that requires that a predecessor basic block
X, other than the basic block V to which the value 0O is
assigned (instep 316 shown in FIG. 3B), precedes a successor
basic block W following the basic block V, and that the
successor basic block W exists on the fall-through path from
the predecessor basic block X. If the condition is met, the
computer (101) advances the process to step 323. If the con-
dition is not met, the computer (101) advances the process to
step 324.

In step 323, the computer (101) assigns a path value 0 to an
edge E' (i.e., V—=W in the above-described case) (Val[E']=0)
between the above-described basic block V (corresponding to
the basic block v shown in FIGS. 2A to 2D, for example) and
the above-described successor basic block W (corresponding
to the basic block w or w1l shown in FIGS. 2A to 2D, for
example) according to the case where the above-described
condition is met. The reason for assigning the path value 0 is
that if the path value 0 is assigned to the edge, there is no need
to perform processing for addition/subtraction on the edge,
and the need to insert a basic block on the edge and the need
for a jump instruction are thereby eliminated to achieve a
cost-reduction effect. The computer (101) also updates the
value ofthe basic block V by adding the value of the successor
basic block W to the value of the basic block V in order to
make the values of the basic blocks in the control flow graph
unique from the end point toward the beginning point (Num-
Path[V]+=NumPath [W]).

In step 324, the computer (101) assigns a path value 0 to the
edge E' from the basic block V (E'=0) according to the case
where the above-described condition is not met.

In step 325, the computer (101) prepares a list of edges
from the basic block V (EList), the number of edges (M) from
the basic block V, and a variable (J; initial value=0) used to
take out edges one by one from the list of edges (EList). In the
list of edges (EList) from the basic block V, all edges from the
basic block V are listed. Before a start of a loop from step 326
to step 328, the path value 0 is assigned only to the edge from
the basic block V to the basic block W (step 323). Path values
are assigned to the other edges from the basic block V by
repeating steps 326 to 328. Assignments of path values to the
other edges are made in step 328 described below. Path values
are assigned to the other edges, for example, in a way accord-
ing to the order in which the edges are taken out (for example,
in ascending order of 1, 2, 3) such that the other edges respec-
tively have unique values as desired.

In step 326, the computer (101) determines whether or not
the number of edges (M) from the basic block V is larger than
the variable (J). Step 326 is a loop for performing processing
in step 327 with respect to all the edges from the basic block
V. If the number of edges (M) from the basic block V is larger
than the variable (J), the computer (101) advances the process
to step 327. If the number of edges (M) from the basic block
V is not larger than the variable (J) (that is, if the variable (J)
is larger than the number of edges (M) from the basic block
V), the computer (101) advances the process to end step 329.

In step 327, the computer (101) takes out one edge from the
list of edges (EList) from the basic block v according to the
case where the number of edges (M) from the basic block V is
larger than the variable (J), and further determines whether or
not the value of the edge taken out is contained in the list of

25

40

45

55

24

edges (EList) from the basic block v, that is, whether or not
the path value has already been assigned to the edge (EList
[J]==E"). If the value of the edge taken out is not contained in
the list of edges (EList) from the basic block V, the computer
(101) advances the process to step 328 to assign a path value
to this edge. If the value of the edge taken out is contained in
the list of edges (EList) from the basic block V, the computer
(101) returns the process to step 326 since there is no need to
assign any path value to the edge.

In step 328, the computer (101) assigns the value
(non-zero value) of the basic block V as a path value (Val
[EList[J]][=NumPath[V]) according to the case where the
path value of the edge taken out is not contained in the list of
edges (EList) from the basic block V, and updates the value of
the basic block V by adding the value of the successor basic
block EList[J] to the value of the basic block V (NumPath
[V]+=NumPath[EList[J] successor basic block]). Since
NumPath[EList[J] successor basic block] has already been
made non-zero, the updated value of the basic block V is also
anon-zero value. This is because the process shown in FIGS.
3B and 3C is performed on the basic blocks from the end
point, and because, at the time of path value assignment to
edges from one basic block V, processing on the successor
basic block following the basic block V is already completed.
Steps 326 to 328 are repeated to assign unique path values
(except the path value 0 assigned in step 323) to the edges
from the above-described basic block V.

In step 329, the computer (101) ends the process of assign-
ing path values to the edges from the above-described basic
block V according to the case where the variable (J) is larger
than the number of edges (M) from the basic block V in the
determination in step 326.

FIG. 4 shows an example of an algorithm for executing
processing for assigning a value to an edge requiring insertion
of a new basic block in the process of modifying a control
flow graph in accordance with the embodiment of the present
invention.

The above-mentioned algorithm (401) is an algorithm for
assigning a value Val(e) to an edge e. FIGS. 01 to 13 are
inserted in this algorithm for ease of description and are
unnecessary in the actual code.

In the embodiment of the present invention, a value to be
added or subtracted on an edge requiring insertion of a new
basic block in a control flow graph (e.g., the edge v—w shown
in FIG. 2A, the edge v—=w shown in FIG. 2B, the edge v—w1
shown in FIG. 2C, and the edge v—=w1 shown in FIG. 2D) is
set to zero. That is, a path value 0 is assigned to an edge
requiring insertion of a new basic block in a control flow
graph. By assignment of the path value 0 to the edge, the need
for the instrumentation code on the edge is eliminated and the
need for insertion of a new basic block is also eliminated.

In the above-described algorithm (401), a code shown in
lines 06, 07, 08, 09 and 11 is a code added in the embodiment
of'the present invention, and is an algorithm for assigning the
value Val(e) to the edge e. Lines 05, 07, 08, and 12 correspond
to an algorithm for assigning the path value 0 to the first edge
in accordance with the embodiment of the present invention.

Line 01 corresponds to step 312 shown in FIG. 3B.

Line 02 corresponds to step 315 shown in FIG. 3B.

Line 03 corresponds to step 316 shown in FIG. 3B.

Lines 04 and 05 correspond to step 317 shown in FIG. 3B.

Line 06 corresponds to step 322 shown in FIG. 3C.

Lines 07 to 09 correspond to step 323 shown in FIG. 3C.

Line 10 corresponds to step 326 shown in FIG. 3C.

Line 11 corresponds to step 327 shown in FIG. 3C.

Lines 12 and 13 correspond to step 328 shown in FIG. 3C.

US 9,250,880 B2

25

The term: findNewBBEdge(v) shown in line 06 specifies a
condition for a need for a new basic block on the edge v—w
(or v—=w1) between the predecessor basic block v and the
successor basic block w (or wl). This condition requires that
the successor basic block w following the predecessor basic
block v have a predecessor basic block x other than the
predecessor basic block v, and that the successor basic block
w exist on the fall-through path from the predecessor basic
block x.

FIG. 5 shows the results of comparison between the
throughput of a program that implements in a compiler the
algorithm enabling the method according to the prior art and
the throughput of a program that implements in a compiler the
algorithm enabling execution of the embodiment of the
present invention.

The program that implements in a compiler the algorithm
enabling the method according to the prior art is a program
that implements the method described in Non-patent Litera-
ture 2.

The program that implements in a compiler the algorithm
enabling execution of the embodiment of the present inven-
tion exhibited an improvement in performance by 0.7% on
average (see geometric means) and 2.7% at the maximum
(xml. validation) in comparison with the program that imple-
ments the algorithm enabling execution of the method
according to the prior art.

FIG. 6 is a diagram showing an example ofa function block
diagram of a computer for obtaining execution frequency
information on execution paths in a control flow graph. Pref-
erably, the computer has a hardware configuration according
to FIG. 1.

A computer (601) is a computer for obtaining execution
frequency information on execution paths in a control flow
graph in accordance with the embodiment of the present
invention, for example, the computer (101) shown in FIG. 1.

The computer (601) has a memory (611), control flow
graph preparation means (612) and execution frequency
information obtaining means (613). The control flow graph
preparation means (612) includes control flow graph modifi-
cation means (621). The control flow graph modification
means (621) is a means added in the embodiment of the
present invention. The computer (601) may have the control
flow graph preparation means (612) and control flow graph
modification means (621) provided separately from each
other.

The memory (611) stores a source code to be compiled,
which is read by the computer from the storage medium (391)
storing the source code to be compiled.

The computer (601) uses the memory (611) in execution of
step 302 shown in FIG. 3A.

The control flow graph preparation means (612) prepares a
control flow graph from a source code to be compiled.

If a predecessor basic block x other than the predecessor
basic block v precedes the successor basic block w following
the predecessor basic block v, and if the successor basic block
w exists on the fall-through path from the predecessor basic
block x, the control flow graph modification means (621)
assigns a path value 0 to the edge v—w between the prede-
cessor basic block v and the successor basic block w, thereby
modifying the control graph.

If a successor basic block w' other than the successor basic
block w following the predecessor basic block v has no pre-
decessor basic block other than the predecessor basic block v,
the control flow graph modification means (621) may insert
an instruction to add a path value in the successor basic block

w'

10

15

20

25

30

35

40

45

50

55

60

65

26

If the successor basic block w' other than the successor
basic block w following the predecessor basic block v has a
predecessor basic block y other than the predecessor basic
block v, the control flow graph modification means (621) may
insert a new basic block m on the edge v—w' between the
predecessor basic block v and the successor basic block w'
and may insert an instruction to add a path value in the basic
block m.

If the successor basic block w' exists on the fall-through
path from the predecessor basic block y, the control flow
graph modification means (621) may insert in the basic block
m an instruction to make a jump to the basic block w'.

If three or more successor basic blocks {w1, ..., wn} exist
subsequently to the predecessor basic block v, the control
flow graph modification means (621) may modify the control
flow graph by taking out one successor basic block wi in the
three or more successor basic blocks {w1, ..., wn} provided
that the successor basic block wi has a predecessor basic
block x other than the predecessor basic block v existing as a
successor basic block following the predecessor basic block v
and exists on the fall-through path from the predecessor basic
block x, and by assigning zero to an edge v—wi between the
predecessor basic block v and the successor basic block wi
taken out. Taking the above-described successor basic block
wi satisfying the above-described condition out of the plural-
ity of successor basic blocks {w1, . . ., wn} may comprise
taking out the successor basic block wi with a higher execu-
tion frequency according to a state where the execution fre-
quencies of some of the plurality of successor basic blocks
{wl, ..., wn} are known.

The control flow graph modification means (621) may
insert an instruction to add a path value on an edge v—wj
between the predecessor basic block v and a successor basic
block wj other than the successor basic block wi to which zero
is assigned as described above.

If the successor basic block wj does not exist on the fall-
through path from the predecessor basic block v, and if the
successor basic block wj has a predecessor basic block other
than the predecessor basic block v, the control flow graph
modification means (621) may insert a jump instruction to
make a jump to the successor basic block wj immediately
after the instruction to add a path value.

The control flow graph preparation means (612) may
execute step 303 shown in FIG. 3A.

The control flow graph modification means (621) executes
steps 304 and 305 shown in FIG. 3A and the steps shown in
FIGS. 3B and 3C.

The control flow graph modification means (621) inserts an
instruction to add a path value in the successor basic block x
(corresponding to the successor basic block w'), as shown in
FIG. 2A (Example 1). However, the successor basic block x
having the insertion includes no jump instruction.

If the predecessor basic block y does not exist on the edge
v—x between the predecessor basic block v and the successor
basic block x but precedes the successor basic block x, the
control flow graph modification means (621) inserts a basic
block m including an instruction to add a path value between
the predecessor basic block v and the successor basic block x,
as shown in FIG. 2B (Example 2). However, the inserted basic
block m includes no jump instruction.

The control flow graph modification means (621) inserts an
instruction to add a path value in the successor basic block x
(corresponding to the successor basic block w'), as shown in
FIG. 2C (Example 3). However, the successor basic block x
having the insertion includes no jump instruction.

If the predecessor basic block y does not exist on the edge
v—x between the predecessor basic block v and the successor

US 9,250,880 B2

27

basic block x but precedes the successor basic block x, the
control flow graph modification means (621) inserts a basic
block q including an instruction to add a path value between
the predecessor basic block v and the successor basic block x,
as shownin FIG. 2D (Example 4). However, the inserted basic
block q includes no jump instruction.

The execution frequency information obtaining means
(613) obtains execution frequency information by using the
control flow graph modified by the control flow graph modi-
fication means (621).

The execution frequency information obtaining means
(613) executes step 306 shown in FIG. 3A.

The invention claimed is:

1. A method for obtaining execution frequency information
on execution paths in a control flow graph, the method com-
prising causing a computer to execute the steps of:

reading, by one or more computer processors, into a
memory a source code to be complied;

preparing, by one or more computer processors, a control
flow graph from the source code read into the memory,
the preparing step including, prior to modification of the
control flow graph, assigning zero to an edge v—w
between a basic block v in a precedent position (herein-
after referred to as “predecessor basic block™) and a
basic block w following the predecessor basic block v
(hereinafter referred to as “successor basic block™) in a
case where the successor basic block w has a predeces-
sor basic block x other than the predecessor basic block
v, and where the successor basic block w exists on a
fall-through path from the predecessor basic block x,
and wherein when zero is assigned to the edge v—w, no
instruction to add a path value to the edge v—w is added;

modifying, by one or more computer processors, the con-
trol flow graph according to one of the following steps:

1) inserting an instruction to add a path value in a successor
basic block w' other than the successor basic block w in
a case where the successor basic block w' other than the
successor basic block w following the predecessor basic
block v has no predecessor basic block other than the
predecessor basic block v;

2) inserting a basic block m on an edge v—w' between the
predecessor basic block v and a successor basic block w'
other than the successor basic block w and inserting an
instruction to add a path value in the basic block m in a
case where the successor basic block w' other than the
successor basic block w following the predecessor basic
block v has a predecessor basic block y other than the
predecessor basic block v; or

3) modifying the control flow graph by taking out one

successor basic block wi from three or more successor
basic blocks {w1, ..., wn} if the three or more successor
basic blocks {w1, . .., wn} exist subsequently to the

predecessor basic block v, provided that the successor
basic block wihas a predecessor basic block x other than
the predecessor basic block v existing as a successor
basic block following the predecessor basic block v and
exists on a fall-through path from the predecessor basic
block x, and by assigning zero to an edge v—wi between
the predecessor basic block v and the successor basic
block wi taken out; and

obtaining, by one or more computer processors, the execu-

tion frequency information by using the control flow
graph modified by the modifying step.

2. The method according to claim 1, wherein the step of
modifying the control flow graph further includes, responsive
to inserting a basic block m on an edge v—w' between the
predecessor basic block v and a successor basic block w', a

10

15

20

25

30

35

40

45

50

55

60

65

28

step of inserting in the basic block m a jump instruction to
make a jump to the successor basic block w' if the successor
basic block w' exists on a fall-through path from the prede-
cessor basic block y.

3. The method according to claim 1, wherein the step of
modifying the control flow graph further includes, responsive
to taking out one successor basic block wi from three or more
successor basic blocks {w1, . . ., wn}, a step of inserting a
basic block n on an edge v—wj between the predecessor basic
block v and a successor basic block wj other than the succes-
sor basic block wi to which zero is assigned, and inserting in
the basic block n an instruction to add a path value.

4. The method according to claim 3, wherein the step of
modifying the control flow graph further includes a step of
inserting a jump instruction to make a jump to the successor
basic block wj immediately after the instruction to add a path
value in the basic block n if the successor basic block wj does
not exist on the fall-through path from the predecessor basic
block v, and if the successor basic block wj has a predecessor
basic block other than the predecessor basic block v.

5. The method according to claim 1, wherein taking the one
successor basic block wi satisfying the condition out of the
three or more successor basic blocks {wl, ..., wn} further
includes a step of taking out the successor basic block wi with
a higher execution frequency according to a state where the
execution frequencies of some of the three or more successor
basic blocks {w1, ..., wn} are known.

6. A computer for obtaining execution frequency informa-
tion on execution paths in a control flow graph, the computer
comprising:

a memory into which a source code to be complied is read;

control flow graph preparation means for preparing a con-
trol flow graph from the source code read into the
memory, the control flow graph preparation means
including, prior to modification of the control flow
graph, assigning zero to an edge v—w between a basic
block v in a precedent position (hereinafter referred to as
“predecessor basic block™) and a basic block w follow-
ing the predecessor basic block v (hereinafter referred to
as “‘successor basic block™) in a case where the successor
basic block w has a predecessor basic block x other than
the predecessor basic block v, and where the successor
basic block w exists on a fall-through path from the
predecessor basic block x, and wherein when zero is
assigned to the edge v—w, no instruction to add a path
value to the edge v—w is added;

control flow graph modification means for modifying the
control flow graph according to one of the following
steps:

1) inserting an instruction to add a path value in a successor
basic block w' other than the successor basic block w in
a case where the successor basic block w' other than the
successor basic block w following the predecessor basic
block v has no predecessor basic block other than the
predecessor basic block v;

2) inserting a basic block m on an edge v—w' between the
predecessor basic block v and a successor basic block w'
other than the successor basic block w and inserts an
instruction to add a path value in the basic block m in a
case where the successor basic block w' other than the
successor basic block w following the predecessor basic
block v has a predecessor basic block y other than the
predecessor basic block v; or

3) moditying the control flow graph by taking out one
successor basic block wi from three or more successor
basic blocks {w1, ..., wn} if the three or more successor
basic blocks {wl, . . . wn} exist subsequently to the

US 9,250,880 B2

29

predecessor basic block v, provided that the successor
basic block wihas a predecessor basic block x other than
the predecessor basic block v existing as a successor
basic block following the predecessor basic block v and
exists on a fall-through path from the predecessor basic
block x, and by assigning zero to an edge v—wi between
the predecessor basic block v and the successor basic
block wi taken out; and

execution frequency information obtaining means for

obtaining the execution frequency information by using
the control flow graph modified by the control flow
graph modification means.

7. The computer according to claim 6, wherein the control
flow graph modification means, responsive to inserting a
basic block m on an edge v—w' between the predecessor
basic block v and a successor basic block w', inserts in the
basic block m a jump instruction to make a jump to the basic
block w' if the successor basic block w' exists on a fall-
through path from the predecessor basic block y.

8. The computer according to claim 6, wherein the control
flow graph modification means, responsive to taking out one
successor basic block wi from three or more successor basic
blocks {w1, ..., wn},inserts a basic block n onan edge v—wj
between the predecessor basic block v and a successor basic
block wj other than the successor basic block wi to which zero
is assigned, and inserts in the basic block n an instruction to
add a path value.

9. The computer according to claim 8, wherein the control
flow graph modification means inserts a jump instruction to
make a jump to the successor basic block wj immediately
after the instruction to add a path value if the successor basic
block wj does not exist on the fall-through path from the
predecessor basic block v, and if the successor basic block wj
has a predecessor basic block other than the predecessor basic
block v.

10. The computer according to claim 6, wherein taking the
one successor basic block wi satisfying the condition out of
the three or more successor basic blocks {w1, . . . , wn}
includes taking out the successor basic block wi with a higher
execution frequency according to a state where the execution
frequencies of some of the three or more successor basic
blocks {w1, ..., wn} are known.

11. A non-transitory computer program product for obtain-
ing execution frequency information on execution paths in a
control flow graph, the computer program product causing a
computer to:

10

15

20

25

30

35

40

45

30

read into a memory a source code to be complied;

prepare a control flow graph from the source code read into
the memory, the preparing step including, prior to modi-
fication of the control flow graph, assigning zero to an
edge v—w between a basic block v in a precedent posi-
tion (hereinafter referred to as “predecessor basic
block™) and a basic block w following the predecessor
basic block v (hereinafter referred to as “successor basic
block™) in a case where the successor basic block w has
a predecessor basic block x other than the predecessor
basic block v, and where the successor basic block w
exists on a fall-through path from the predecessor basic
block x, and wherein when zero is assigned to the edge
v—w, no instruction to add a path value to the edge v—=w
is added;

modify the control flow graph according to one of the
following steps:

1) inserting an instruction to add a path value in a successor
basic block w' other than the successor basic block w in
a case where the successor basic block w' other than the
successor basic block w following the predecessor basic
block v has no predecessor basic block other than the
predecessor basic block v

2) inserting a basic block m on an edge v—w' between the
predecessor basic block v and a successor basic block w'
other than the successor basic block w and inserting an
instruction to add a path value in the basic block m in a
case where the successor basic block w' other than the
successor basic block w following the predecessor basic
block v has a predecessor basic block y other than the
predecessor basic block v

3) moditying the control flow graph by taking out one
successor basic block wi from three or more successor
basic blocks {w1, ..., wn} if the three or more successor
basic blocks {w1, . . ., wn} exist subsequently to the
predecessor basic block v, provided that the successor
basic block wi has a predecessor basic block x other than
the predecessor basic block v existing as a successor
basic block following the predecessor basic block v and
exists on a fall-through path from the predecessor basic
block x, and by assigning zero to an edge v—wi between
the predecessor basic block v and the successor basic
block wi taken out; and

obtain the execution frequency information by using the
control flow graph modified by the modifying step.

#* #* #* #* #*

